Learn More
FE65 binds to the Alzheimer amyloid precursor protein (APP), but the function of this interaction has not been identified. Here, we report that APP and FE65 are involved in regulation of cell movement. APP and FE65 colocalize with actin and Mena, an Abl-associated signaling protein thought to regulate actin dynamics, in lamellipodia. APP and FE65(More)
The principal component of Alzheimer's amyloid plaques, Abeta, derives from proteolytic processing of the Alzheimer's amyloid protein precursor (APP). FE65 is a brain-enriched protein that binds to APP. Although several laboratories have characterized the APP-FE65 interaction in vitro, the possible relevance of this interaction to Alzheimer's disease has(More)
Although the Alzheimer amyloid protein precursor (APP) has been studied intensely for more than a decade, its function in neurons is unresolved. Much less is known about its binding partner FE65. We have shown recently that APP and FE65 synergistically regulate the movement of transfected cells. It remained to be shown whether endogenous APP and FE65 could(More)
In order to localize amyloid protein precursor (APP) in nerve terminals, we have immunoisolated vesicular organelles from nerve terminal preparations using antibodies to Rab5 and synaptophysin. These immunoisolates were then analyzed by electron microscopy and by immunoblotting. The synaptophysin immunoisolates represented a nearly homogeneous population of(More)
BACE (beta-site APP cleaving enzyme) has been recently proposed as the major aspartyl protease displaying beta secretase activity in neurons. The C-terminal domain of BACE contains a dileucine motif (LL499/500) that can potentially regulate its trafficking and endocytosis, and an adjacent serine, which is a potential phosphorylation site (S498) that could(More)
Several studies suggest a role for the amyloid precursor protein (APP) in neurite outgrowth and synaptogenesis, but the downstream interactions that mediate the function of APP during neuron development are unknown. By introducing interaction-deficient FE65 into cultured hippocampal neurons using adenovirus, we show that a complex including APP, FE65 and an(More)
BACE is an aspartyl protease that cleaves the amyloid precursor protein (APP) at the beta-secretase cleavage site and is involved in Alzheimer's disease. The aim of our study was to determine whether BACE affects the processing of the APP homolog APLP2. To this end, we developed BACE knockout mice with a targeted insertion of the gene for(More)
Studies in continuously cultured cells have established that familial Alzheimer's disease (FAD) mutant presenilin 1 (PS1) delays exit of the amyloid precursor protein (APP) from the trans-Golgi network (TGN). Here we report the first description of PS1-regulated APP trafficking in cerebral neurons in culture and in vivo. Using neurons from transgenic mice(More)
BACKGROUND Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing(More)
  • 1