Annalisa Scimemi

Learn More
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses,(More)
In the mammalian brain, the specificity of excitatory synaptic transmission depends on rapid diffusion of glutamate away from active synapses and the powerful uptake capacity of glutamate transporters in astrocytes. The extent to which neuronal glutamate transporters influence the lifetime of glutamate in the extracellular space remains unclear. Here we(More)
GLT-1, the major glutamate transporter in the adult brain, is abundantly expressed in astrocytic processes enveloping synapses. By limiting glutamate escape into the surrounding neuropil, GLT-1 preserves the spatial specificity of synaptic signaling. Here we show that the amyloid-β peptide Aβ1-42 markedly prolongs the extracellular lifetime of synaptically(More)
Fast synaptic transmission requires tight colocalization of Ca(2+) channels and neurotransmitter vesicles. It is generally thought that Ca(2+) channels are expressed abundantly in presynaptic active zones, that vesicles within the same active zone have similar release properties, and that significant vesicle depletion only occurs at synapses with high(More)
TRP channels were first identified as membrane proteins mediating phototransduction in fruit flies. Astrocytes were initially referred to as the silent elements of the nervous system. At the time these discoveries were made, few would have suspected TRP channels and astrocytes could contribute significantly to our understanding of brain signalling. Recent(More)
The highest density of glutamate transporters in the brain is found in astrocytes. Glutamate transporters couple the movement of glutamate across the membrane with the co-transport of 3 Na+ and 1 H+ and the counter-transport of 1 K+. The stoichiometric current generated by the transport process can be monitored with whole-cell patch-clamp recordings from(More)
Editor's Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see Review of Farina et al.(More)
  • 1