Annalisa Milella

Learn More
In this paper, we present a stereovision algorithm for real-time 6DoF ego-motion estimation, which integrates image intensity information and 3D stereo data in the well-known Iterative Closest Point (ICP) scheme. The proposed method addresses a basic problem of standard ICP, i.e. its inability to perform the segmentation of data points and to deal with(More)
—Mobile robots are increasingly being used in high-risk rough terrain situations, such as planetary exploration and military applications. Current control and localization algorithms are not well suited to rough terrain, since they generally do not consider the physical characteristics of the vehicle and its environment. Little attention has been devoted to(More)
Autonomous driving is a challenging problem in mobile robotics, particularly when the domain is unstructured, as in an outdoor setting. In addition, field scenarios are often characterized by low visibility as well, due to changes in lighting conditions, weather phenomena including fog, rain, snow and hail, or the presence of dust clouds and smoke. Thus,(More)
Reliable terrain analysis is a key requirement for a mobile robot to operate safely in challenging environments, such as in natural outdoor settings. In these contexts, conventional navigation systems that assume a priori knowledge of the terrain geometric properties, appearance properties, or both, would most likely fail, due to the high variability of the(More)
— External perception based on vision plays a critical role in developing improved and robust localization algorithms, as well as gaining important information about the vehicle and the terrain it is traversing. This paper presents two novel methods for rough terrain-mobile robots, using visual input. The first method consists of a stereovision algorithm(More)