Annalisa Fierro

Learn More
In colloidal suspensions, at low volume fraction and temperature, dynamical arrest occurs via the growth of elongated structures that aggregate to form a connected network at gelation. Here we show that, in the region of parameter space where gelation occurs, the stable thermodynamical phase is a crystalline columnar one. Near and above the gelation(More)
In order to study analytically the nature of the jamming transition in granular material, we have considered a cavity method mean-field theory, in the framework of a statistical mechanics approach, based on Edwards' original idea. For simplicity, we have applied the theory to a lattice model, and a transition with exactly the same nature of the glass(More)
We construct a very simple epidemic model for influenza spreading in an age-class-distributed population, by coupling a lattice gas model for the population dynamics with a SIR stochastic model for susceptible, infected and removed/immune individuals. We use as a test case the age-distributed Italian epidemiological data for the novel influenza A(H1N1). The(More)
The present paper develops a Statistical Mechanics approach to the inherent states of glassy systems and granular materials by following the original ideas proposed by Edwards for granular media. We consider three lattice models (a diluted spin glass, a system of hard spheres under gravity and a hard-spheres binary mixture under gravity) introduced to(More)
We discuss a statistical mechanics approach in the manner of Edwards to the "inherent states" (defined as the stable configurations in the potential energy landscape) of glassy systems and granular materials. We show that at stationarity the inherent states are distributed according a generalized Gibbs measure obtained assuming the validity of the principle(More)
We study the structure and the dynamics in the formation of irreversible gels by means of molecular dynamics simulation of a model system where the gelation transition is due to the random percolation of permanent bonds between neighboring particles. We analyze the heterogeneities of the dynamics in terms of the fluctuations of the self-intermediate(More)
In order to study analytically the nature of the size segregation in granular mixtures, we introduce a mean field theory in the framework of a statistical mechanics approach, based on Edwards' original ideas. For simplicity we apply the theory to a lattice model for a hard sphere binary mixture under gravity, and we find a new purely thermodynamic mechanism(More)
The structural arrest of a polymeric suspension might be driven by an increase of the cross-linker concentration, which drives the gel transition, as well as by an increase of the polymer density, which induces a glass transition. These dynamical continuous (gel) and discontinuous (glass) transitions might interfere, since the glass transition might occur(More)