Anna Yu Aksenova

Learn More
Two cytoplasmically inherited determinants related by their manifestation to the control of translation accuracy were previously described in yeast. Cells carrying one of them, [PSI(+)], display a nonsense suppressor phenotype and contain a prion form of the Sup35 protein. Another element, [PIN(+)], determines the probability of de novo generation of(More)
The efficiency of stop codons read-through in yeast is controlled by multiple interactions of genetic and epigenetic factors. In this study, we demonstrate the participation of the Hal3-Ppz1 protein complex in regulation of read-through efficiency and manifestation of non-Mendelian anti-suppressor determinant [ISP(+)]. Over-expression of HAL3 in [ISP(+)](More)
To test the hypothesis that inaccurate DNA synthesis by mammalian DNA polymerase eta (pol eta) contributes to somatic hypermutation (SHM) of Ig genes, we measured the error specificity of mouse pol eta during synthesis of each strand of a mouse Ig kappa light chain transgene. We then compared the results to the base substitution specificity of SHM of this(More)
Interstitial telomeric sequences (ITSs) are present in many eukaryotic genomes and are linked to genome instabilities and disease in humans. The mechanisms responsible for ITS-mediated genome instability are not understood in molecular detail. Here, we use a model Saccharomyces cerevisiae system to characterize genome instability mediated by yeast telomeric(More)
Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4)(More)
Expansions of microsatellite repeats are responsible for numerous hereditary diseases in humans, including myotonic dystrophy and Friedreich's ataxia. Whereas the length of an expandable repeat is the main factor determining disease inheritance, recent data point to genomic trans modifiers that can impact the likelihood of expansions and disease(More)
Instability of repetitive DNA sequences causes numerous hereditary disorders in humans, the majority of which are associated with trinucleotide repeat expansions. Here, we describe a unique system to study instability of triplet repeats in a yeast experimental setting. Using fluctuation assay and the novel program FluCalc we are able to accurately estimate(More)
Telomeric repeats located within chromosomes are called interstitial telomeric sequences (ITSs). They are polymorphic in length and are likely hotspots for initiation of chromosomal rearrangements that have been linked to human disease. Using our S. cerevisiae system to study repeat-mediated genome instability, we have previously shown that yeast telomeric(More)
  • 1