Anna Skálová

Learn More
The aim of this study was to characterize the first cases and outbreaks of OXA-48-like-producing Enterobacteriaceae recovered from hospital settings in the Czech Republic. From 2013 to 2015, 22 Klebsiella pneumoniae isolates, 3 Escherichia coli isolates, and 1 Enterobacter cloacae isolate producing OXA-48-like carbapenemases were isolated from 20 patients.(More)
The objective of this study was to perform molecular surveillance for assessing the spread of carbapenemase-producing Pseudomonas aeruginosa in Czech hospitals. One hundred thirty-six carbapenemase-producing isolates were recovered from 22 hospitals located throughout the country. Sequence type 357 (ST357) dominated (n = 120) among carbapenemase producers.(More)
The complete nucleotide sequences of three multidrug resistance (MDR) IncA/C-like plasmids from Enterobacteriaceae isolates carrying the VIM-type carbapenemase-encoding integrons In4863 (blaVIM-19-aacA7-dfrA1-ΔaadA1-smr2) or In4873 (blaVIM-1-aacA7-dfrA1-ΔaadA1-smr2) were determined, which are the first In416-like elements identified in Greece. Plasmids(More)
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) -based identification of bacteria and fungi significantly changed the diagnostic process in clinical microbiology. We describe here a novel technique for bacterial and yeast deposition on MALDI target using an automated workflow resulting in an increase of the(More)
ST252 Enterobacter cloacae, producing GES-5 carbapenemase, was isolated in a Czech hospital. blaGES-5 was part of a novel class 1 integron, In1406, which also included a new allele of the aadA15 gene cassette. In1406 was located on a ColE2-like plasmid, pEcl-35771cz (6953bp).
A comparison of carbapenem molecules for the detection of carbapenemase-producing bacteria by MALDI-TOF MS showed that imipenem exhibited higher sensitivity (97%) and specificity (100%) scores for Pseudomonas aeruginosa than meropenem. However, meropenem was more efficient (98% sensitivity and 100% specificity) against Enterobacteriaceae.
  • 1