Learn More
A preferential loss of brain cholinergic neurons in the course of Alzheimer's disease and other encephalopathies is accompanied by a proportional impairment of acetyl-CoA synthesizing capacity in affected brains. Particular susceptibility of cholinergic neurons to neurodegeneration might results from insufficient supply of acetyl-CoA for energy production(More)
Zinc is a trace element necessary for proper development and function of brain cells. However, excessive accumulation of zinc exerts several cytotoxic effects in the brain. The aim of this work was to see whether cytotoxic effects of zinc are quantitatively correlated with changes in acetyl-CoA metabolism. The zinc levels up to 0.20 mmol/L caused(More)
Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However,(More)
Excessive accumulation of zinc in the brain is one of putative factors involved in pathomechanism of cholinergic encephalopathies. The aim of this work was to investigate whether short-term increase of zinc concentration in the extracellular space may affect energy and acetylcholine metabolism in SN56 cholinergic cells of septal origin. Short 30 min(More)
The work presented here verifies the hypothesis that RS-alpha-lipoic acid may exert its cholinoprotective and cholinotrophic activities through the maintenance of appropriate levels of acetyl-CoA in mitochondrial and cytoplasmic compartments of cholinergic neurons. Sodium nitroprusside (SNP) and amyloid-beta decreased pyruvate dehydrogenase, choline(More)
Inhibition of pyruvate (PDHC) and ketoglutarate (KDHC) dehydrogenase complexes induced by thiamine pyrophosphate deficits is known cause of disturbances of cholinergic transmission in the brain, yielding clinical symptoms of cognitive, vegetative and motor deficits. However, particular alterations in distribution of key acetylcholine precursor, acetyl-CoA,(More)
Intramitochondrial decarboxylation of glucose-derived pyruvate by PDHC (pyruvate dehydrogenase complex) is a principal source of acetyl-CoA, for mitochondrial energy production and cytoplasmic synthetic pathways in all types of brain cells. The inhibition of PDHC, ACO (aconitase) and KDHC (ketoglutarate dehydrogenase complex) activities by neurodegenerative(More)
Pyruvate dehydrogenase reaction utilizing glucose-derived pyruvate is an almost exclusive source of acetyl-CoA in different cell mitochondrial compartments of the brain. In neuronal mitochondria, the largest fraction of acetyl-CoA is utilized for energy production and the much smaller one for N-acetyl-L-aspartate (NAA) synthesis. Cholinergic neurons, unlike(More)
Retinoic acid is a potent cell differentiating factor, which through its nuclear receptors affects a vast range of promoter sites in brain neuronal and glial cells in every step of embryonic and postnatal life. Its capacities, facilitating maturation of neurotransmitter phenotype in different groups of neurons, pave the way for its application as a(More)
The pyruvate-derived acetyl-CoA is a principal direct precursor substrate for bulk energy synthesis in the brain. Deficits of pyruvate dehydrogenase in the neocortex are common features of Alzheimer's disease and other age-related encephalopathies in humans. Therefore, amyloid-β overload in brains of diverse transgenic Alzheimer's disease model animals was(More)