Learn More
TorsinA is a membrane-associated AAA+ (ATPases associated with a variety of cellular activities) ATPase implicated in primary dystonia, an autosomal-dominant movement disorder. We reconstituted TorsinA and its cofactors in vitro and show that TorsinA does not display ATPase activity in isolation; ATP hydrolysis is induced upon association with LAP1 and(More)
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of(More)
Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt(More)
The pleckstrin homology (PH) domain of the general receptor of phosphoinositides 1 (GRP1) protein selectively binds to a rare signaling phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), in the membrane. The specific PIP3 lipid docking of GRP1 PH domain is essential to protein cellular function and is believed to occur in a stepwise process,(More)
A generally applicable strategy of chemically labeling (-)-morphine (1) is described. The synthesis starts from commercially available starting materials and can be completed in two steps with an overall yield of 23%. In silico simulation and NMR results show that the binding of (-)-morphine to one of its molecular targets, toll-like receptor 4 (TLR4), was(More)
Torsins are essential, disease-relevant AAA+ (ATPases associated with various cellular activities) proteins residing in the endoplasmic reticulum and perinuclear space, where they are implicated in a variety of cellular functions. Recently, new structural and functional details about Torsins have emerged that will have a profound influence on unraveling the(More)
  • 1