Learn More
Pallido-nigral spheroids associated with iron deposition have been observed in some aged clinically normal nonhuman primates. In humans, similar findings are observed in neurodegeneration with brain iron accumulation diseases, which, in some cases, show associated mutations in pantothenate kinase 2 gene (PANK2). Here we present an aged gorilla, 40 years(More)
Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics(More)
Hepatic steatosis is a major risk factor in ischemia-reperfusion. The present study evaluates whether preconditioning, demonstrated to be effective in normal livers, could also confer protection in the presence of steatosis and investigates the potential underlying protective mechanisms. Fatty rats had increased hepatic injury and decreased survival after(More)
Lafora disease (LD) is caused by mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of polyglucosan inclusions called Lafora Bodies (LBs). Malin knockout (KO) mice present polyglucosan accumulations in several brain areas, as do patients of LD. These structures are abundant in the cerebellum and hippocampus. Here,(More)
Hepatic ischemia-reperfusion (I/R) injury associated with liver transplantation and hepatic resections are an unresolved problem in the clinical practice. Preconditioning is known to preserve energy metabolism in liver during sustained ischemia, but the molecular mechanisms underlying this effect are still unclear. Different metabolic signals, including(More)
Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and(More)
Hepatic ischemia-reperfusion (I/R) injury still remains an unresolved problem in both liver resectional surgery and liver transplantation and may be responsible for liver failure, lung injury and death. The current review summarizes the findings reported to date on the effectiveness of ischemic preconditioning against liver and lung damage associated with(More)
OBJECTIVE We examined whether pharmacologic strategies blocking angiotensin II actions protect steatotic livers against ischemia-reperfusion (I/R) injury. The effects of ischemic preconditioning (PC) on angiotensin II were also evaluated. DESIGN Randomized and controlled animal study. SETTING Experimental laboratory. SUBJECTS Zucker rats. (More)
The present study evaluates the effect of ischemic preconditioning on interleukin-1 (IL-1) and interleukin-10 (IL-10) generation following hepatic ischemia/reperfusion (I/R) in normal and steatotic livers as well as the role of nitric oxide (NO) in this process. Increased IL-1beta and IL-10 levels were observed in normal livers after I/R. Steatotic livers(More)
The shortage of available organs for liver transplantation has motivated the development of new surgical techniques such as reduced-size liver transplantation. Ischemia-reperfusion (I/R) associated with liver transplantation impairs liver regeneration. Ischemic preconditioning is effective against I/R injury in clinical practice of liver tumour resections.(More)