Learn More
The term apomixis encompasses a suite of processes whereby seeds form asexually in plants. In contrast to sexual reproduction, seedlings arising from apomixis retain the genotype of the maternal parent. The transfer of apomixis and its effective utilization in crop plants (where it is largely absent) has major advantages in agriculture. The hallmark(More)
Fruit and seed formation in plants is normally initiated after pollination and fertilization, and, in the absence of fertilization, flowers senesce. In the Arabidopsis thaliana mutant fruit without fertilization, a mutation in AUXIN RESPONSE FACTOR8 (ARF8) results in the uncoupling of fruit development from pollination and fertilization and gives rise to(More)
Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was(More)
Seed formation in flowering plants requires meiosis of the megaspore mother cell (MMC) inside the ovule, selection of a megaspore that undergoes mitosis to form an embryo sac, and double fertilization to initiate embryo and endosperm formation. During apomixis, or asexual seed formation, in Hieracium ovules, a somatic aposporous initial (AI) cell divides to(More)
Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many(More)
Arabidopsis END1-LIKE (AtEND1) was identified as a homolog of the barley endosperm-specific gene END1 and provides a model for the study of this class of genes and their products. The END1 is expressed in the endosperm transfer cells (ETC) of grasses. The ETC are responsible for transfer of nutrients from maternal tissues to the developing endosperm.(More)
The Arabidopsis thaliana MYB5 gene is expressed in trichomes and seeds, including the seed coat. Constitutive expression of MYB5 resulted in the formation of more small trichomes and ectopic trichomes and a reduction in total leaf trichome numbers and branching. A myb5 mutant displayed minimal changes in trichome morphology, while a myb23 mutant produced(More)
Apomixis in Hieracium subgenus Pilosella initiates in ovules when sporophytic cells termed aposporous initial (AI) cells enlarge near sexual cells undergoing meiosis. AI cells displace the sexual structures and divide by mitosis to form unreduced embryo sac(s) without meiosis (apomeiosis) that initiate fertilization-independent embryo and endosperm(More)
In apomictic Hieracium subgenus Pilosella species, embryo sacs develop in ovules without meiosis. Embryo and endosperm formation then occur without fertilization, producing seeds with a maternal genotype encased in a fruit (achene). Genetic analyses in H. praealtum indicate a dominant locus (LOA) controls meiotic avoidance, and another dominant locus (LOP)(More)