Anna K. Shchyolkina

Learn More
Parallel-stranded (ps) DNAs with mixed AT/GC content comprising G.C pairs in a varying sequence context have been investigated. Oligonucleotides were devised consisting of two 10-nt strands complementary either in a parallel or in an antiparallel orientation and joined via nonnucleotide linkers so as to form 10-bp ps or aps hairpins. A predominance of(More)
The ability of oligonucleotides 3'-d(GT)5pO(CH2)6Opd(GT)5-5' (anti[d(GT)]) and 3'-d(GT)5pO(CH2)6Opd(GT)5-3' (par[par[d(GT)]) to form tertiary structures has been studied. Circular dichroism (CD) as well as the fluorescence of the ethidium bromide (EtBr) complexes with oligonucleotides and hydrodynamic volume measurements in solutions containing 0.01 M(More)
Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with(More)
Oligonucleotide-directed triplex formation attracts much attention due to its potential usefulness in diagnostic and biotechnological applications. Among other aspects, the research embraces numerous studies probing the influence of intercalating ligands on triplex stability. The effect of the intercalator on triplex formation and stability is known to(More)
5,10,15,20-Tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) is a DNA-binding derivative of porphyrins. A comparative study of the binding of this ligand to biologically significant DNA structures was performed. For this purpose, the interactions of TMPyP3 with the antiparallel telomeric G-quadruplex d(TTAGGG)4, oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 (not(More)
Cationic porphyrin-based compounds capable of interacting with DNA are currently under extensive investigation as prospective anticancer and anti-infective drugs. One of the approaches to enhancing the DNA-binding affinity of these ligands is chemical modification of functional groups of the porphyrin macrocycle. We analyzed the interaction with DNA of(More)
Oligonucleotides 3'-d(GTGTGTGTGG)-L-d(GGTGTGTGTG)-3' (hp-GT) and 3'-d(G4STG4TG4STG4STGG)-L-d(GGTGTGTGTG)-3' (hp-SGT), (L=(CH2CH2O)3), were shown by use of several optical techniques to form a novel parallel-stranded (ps) intramolecular double helix with purine-purine and pyrimidine-pyrimidine base pairing. The rotational relaxation time of hp-GT was similar(More)
EcoRII DNA methyltransferase (M.EcoRII) recognizes the 5' em leader CC*T/AGG em leader 3' DNA sequence and catalyzes the transfer of the methyl group from S-adenosyl-l-methionine to the C5 position of the inner cytosine residue (C*). Here, we study the mechanism of inhibition of M.EcoRII by DNA containing 2-pyrimidinone, a cytosine analogue lacking an NH(2)(More)
Oligonucleotide 5'-d(CATGCTAACT)-L-d(AGTTAGCATG)-L-d(CATGCTAACT)-3' [L = pO(CH2CH2O)3p] is shown to fold back on itself twice forming at pH 7 a sufficiently stable triplex (Tm is about 30 degrees C) with parallel-orientated identical strands (the recombinant or R-form of DNA). Experimental evidence was obtained by studying thermal denaturation, chemical(More)
Oligonucleotides 3'-d(GT)(5)-(CH(2)CH(2)O)(3)-d(GT)(5)-3' (parGT), containing GT repeats present in the telomeric DNA from Saccharomyces cerevisiae, had been demonstrated to form bimolecular structure, GT-quadruplex (qGT) [O. F. Borisova et al. FEBS Letters 306, 140-142 (1992)]. Four d(GT)(5) strands of the GT-quadruplex are parallel and form five(More)