Learn More
Neurodegenerative properties of acrylamide were studied in vitro by exposure of differentiated SH-SY5Y human neuroblastoma cells for 72 h. The number of neurites per cell and the total cellular protein content were determined every 24 h throughout the exposure and the subsequent 96-h recovery period. Using kinetic data on the metabolism of acrylamide in(More)
Risk assessment of neurotoxicity is mainly based on in vivo exposure, followed by tests on behaviour, physiology and pathology. In this study, an attempt to estimate lowest observed neurotoxic doses after single or repeated dose exposure was performed. Differentiated human neuroblastoma SH-SY5Y cells were exposed to acrylamide, lindane, parathion, paraoxon,(More)
The Adverse Outcome Pathway (AOP) framework provides a template that facilitates understanding of complex biological systems and the pathways of toxicity that result in adverse outcomes (AOs). The AOP starts with an molecular initiating event (MIE) in which a chemical interacts with a biological target(s), followed by a sequential series of KEs, which are(More)
This is the report of the forty-ninth of a series of workshops organised by the European Centre for the Validation of Alternative Methods (ECVAM). ECVAM’s main goal, as defined in 1993 by its Scientific Advisory Committee, is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which(More)
Chemical toxicity was estimated by integrating in vitro study results with physiologically-based biokinetic models for eight neurotoxic compounds (benzene, toluene, lindane, acrylamide, parathion/oxon, caffeine, diazepam and phenytoin). In vitro studies on general and specific neurotoxicity were performed and biotransformation and tissue-blood distribution(More)
Here we present a multipotent neuronal progenitor cell line for toxicity testing as an alternative to primary cultures of mixed cell types from brain tissue. The v-myc immortalised C17.2 cell line, originally cloned from mouse cerebellar neural stem cells, were maintained as monolayer in cell culture dishes in DMEM supplemented with fetal calf serum, horse(More)
We have studied neurite degeneration in differentiated human neuroblastoma (SH-SY5Y) cells. The axonopathy-inducing potency in vitro of caffeine, diazepam, methylmercury chloride (MeHg), triethyltin chloride (TET) and acrylamide (ACR) was elucidated. After 72 hours of exposure the neurite degeneration was determined (by morphological quantification) as well(More)
The capsaicin receptor, transient receptor potential, vanilloid type 1 (TRPV1), is a Ca(2+)-permeable ion channel activated by noxious stimuli eliciting pain. Several reports have shown modulation of TRPV1 activity and expression by neuronal growth factors. Here, we study the long-term effects on TRPV1 expression mediated by insulin-like growth factor(More)
Uncoupling proteins (UCPs) have been reported to decrease the mitochondrial production of reactive oxygen species (ROS) by lowering the mitochondrial inner membrane potential (MMP). We have previously shown that UCP3 expression is positively regulated by insulin-like growth factor-1 (IGF-1). The aim of this study was to investigate the role of UCPs in(More)
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca(2+)-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during(More)