Learn More
The p53 tumor suppressor protein is a sequence-specific transcriptional activator of target genes. Exposure of cells to DNA damage results in accumulation of biochemically active p53, with consequent activation of p53-responsive promoters. In order to study how the transcriptional activity of the p53 protein is regulated in vivo, a transgenic mouse strain(More)
Overactivation of glutamate receptors leading to excitotoxicity has been implicated in the neurodegenerative alterations of a range of central nervous system (CNS) disorders. We have investigated the cell-type-specific changes in glutamate receptor localization in developing cortical neurons in culture, as well as the relationship between glutamate receptor(More)
The APP-PS1ΔE9 mouse model of Alzheimer's disease (AD) exhibits age dependent amyloid β (Aβ) plaque formation in their central nervous system due to high expression of mutated human APP and PSEN1 transgenes. Here we evaluated Aβ deposition and changes in soluble Aβ accumulation in the retinas of aged APP-PS1 mice using a combination of immunofluorescence,(More)
Most cases of Alzheimer's disease (AD) are sporadic in nature, although rarer familial AD (FAD) cases have provided important insights into major pathological disease mechanisms. Mutations in the presenilin 1 gene (PS1) are responsible for the majority of FAD cases, causing an earlier age of onset and more rapid progression to end-stage disease than seen in(More)
Intronic expansion of a hexanucleotide GGGGCC repeat in the chromosome 9 open reading frame 72 (C9ORF72) gene is the major cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. However, the cellular function of the C9ORF72 protein remains unknown. Here, we demonstrate that C9ORF72 regulates endosomal trafficking. C9ORF72(More)
Chronic oxidative stress has been linked to the neurodegenerative changes characteristic of Parkinson's disease, particularly alpha-synuclein accumulation and aggregation. However, it remains contentious whether these alpha-synuclein changes are cytotoxic or neuroprotective. The current study utilised long-term primary neural culture techniques with(More)
α-Synuclein is the major protein component of Lewy bodies--the pathological hallmark of Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Its accumulation into intracellular aggregates is implicated in the process of Lewy body formation. However, its roles in both normal function, and disease, remain controversial. Using a novel model of chronic(More)
There has been growing interest in the axon as the initial focus of pathological change in a number of neurodegenerative diseases of the central nervous system. This review concentrates on three major neurodegenerative conditions--amyotrophic lateral sclerosis, multiple sclerosis and Alzheimer's disease--with emphasis on key cellular changes that may(More)
Amyotrophic lateral sclerosis (ALS) is a devastating disorder involving loss of movement due to degeneration of motor neurons. Studies suggest that in ALS axonal dysfunction precedes the death of motor neurons. Pathologically, ALS is characterized by neurofilamentous swellings (spheroids) within the axons of motor neurons. However, the causes of this(More)
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with the loss of cognitive function. Neurofilament (NF) triplet proteins, the major structural (intermediate filament) proteins of neurons, are expressed in a subset of pyramidal cells that show a high degree of vulnerability to degeneration in AD. Alterations in the NF triplet(More)