Anna Chelstowska

Learn More
In Saccharomyces cerevisiae cells with dysfunctional mitochondria, such as in petites, the CIT2 gene encoding the peroxisomal glyoxylate cycle enzyme, citrate synthase 2 (CS2), is transcriptionally activated by as much as 30-fold, a phenomenon we call retrograde regulation. Two genes, RTG1 and RTG2, are required for both basal and elevated expression of(More)
Reducing equivalents in the form of NADPH are essential for many enzymatic steps involved in the biosynthesis of cellular macromolecules. An adequate level of NADPH is also required to protect cells against oxidative stress. The major enzymatic source of NADPH in the cell is the reaction catalyzed by glucose-6-phosphate dehydrogenase, the first enzyme in(More)
The HEM12 gene from Saccharomyces cerevisiae encodes uroporphyrinogen decarboxylase which catalyzes the sequential decarboxylation of the four acetyl side chains of uroporphyrinogen to yield coproporphyrinogen, an intermediate in protoheme biosynthesis. The gene was isolated by functional complementation of a hem12 mutant. Sequencing revealed that the HEM12(More)
We have adapted a LacZ promoter trap screen developed by Burns et al. (1994) to search for genes whose expression is dependent on Rtg2p, a protein with an N-terminal hsp70/actin/sugar kinase ATP binding domain. Rtg2p acts upstream of the basic helix-loop-helix/leucine zipper transcription factors, Rtg1p and Rtg3p. All three proteins are known to be required(More)
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy. Human G6PD gene is highly polymorphic, with over 130 mutations identified, many of which cause hemolytic anemia. We studied a novel point mutation in the G6PD gene 1226 C-->G, predicting the proline 409 to arginine substitution (G6PD Suwalki). We expressed the human(More)
A system for the positive selection of transational initiation suppressors in S. cerevisiae has been developed. A mutant with an ATA initiation codon in the HEM12 gene, encoding uroporphyrinogen decarboxylase, was used to select cis- and trans-acting suppressors. These suppressors partially restore growth on nonfermentable carbon sources, such as glycerol,(More)
The molecular basis of the uroporphyrinogen decarboxylase defect in eleven yeast 'uroporphyric' mutants was investigated. Uroporphyrinogen decarboxylase, an enzyme of the haem-biosynthetic pathway, catalyses the decarboxylation of uroporphyrinogen to coproporphyrinogen and is encoded by the HEM12 gene in the yeast Saccharomyces cerevisiae. The mutations(More)
It was observed previously that the deletion of the open reading frame YNL107w (YAF9) was highly pleiotropic in yeast and caused defective growth phenotypes in the presence of several unrelated inhibitors, including caesium chloride. We have selected multicopy extragenic suppressor genes, revealing that this phenotype can be suppressed by overdosing the(More)
Heme biosynthesis pathway is conserved in yeast and humans and hem12 yeast mutants mimic porphyria cutanea tarda (PCT), a hereditary human disease caused by mutations in the UROD gene. Even though mutations in other genes also affect UROD activity and predispose to sporadic PCT, the regulation of UROD is unknown. Here, we used yeast as a model to study(More)
In order to understand better the role of the human Tip60 complex component Gas41, we analysed its expression levels in brain tumours and searched for possible interactors. Two-hybrid screening of a human foetal brain library allowed identification of some molecular interactors of Gas41. Among them we found n-Myc transcription factor. The interaction(More)