Anna Cabanes

Learn More
Prepubertal exposure to soy or its biologically active component genistein reduces later breast cancer risk in both animal models and human populations. We investigated whether that might be due to reported estrogenic properties of genistein. Our study indicated that daily prepubertal exposures between postnatal days 7 and 20 to 10 microg 17beta-estradiol(More)
At present, we do not know what causes sporadic breast cancer. Environmental factors,particularly diet, appear to explain at least 70% of newly diagnosed breast cancers, but it is not clear what these factors are. We propose that the lack of progress in this area is due to a lack of considering the effect of timing of environmental and dietary exposures on(More)
Findings in humans and animal models suggest that in utero hormonal and dietary exposures increase later breast cancer risk. Since alcohol intake by adult women consistently increases their breast cancer risk, we wondered whether maternal alcohol consumption during pregnancy increases female offspring's mammary tumorigenesis. In our study, pregnant female(More)
Identification of nongenetic biological factors that predispose to alcohol abuse is central to attempts to prevent alcoholism. Since an exposure to estradiol in utero increases voluntary alcohol intake in adulthood, we investigated whether an increase in pregnancy estradiol levels, caused by feeding pregnant mice a high-fat corn oil diet, also influences(More)
The etiology of breast cancer is closely linked to the female hormone estrogen, with high life-time exposure being suggested to increase breast cancer risk [Nature 303 (1983) 767]. However, there appears to be a disparity between studies attempting to establish an association between high estrogen levels and breast cancer risk. This disparity becomes(More)
Flaxseed contains several dietary components that have been linked to low breast cancer risk; i.e., n-3 polyunsaturated fatty acids (PUFAs), lignans and fiber, but it also contains detectable levels of cadmium, a heavy metal that activates the estrogen receptor (ER). Since estrogenic exposures early in life modify susceptibility to develop breast cancer, we(More)
In rats, prepubertal exposure to low-fat diet containing n-3 polyunsaturated fatty acids (PUFA) reduces mammary cell proliferation, increases apoptosis, and lowers risk of mammary tumors in adulthood, whereas prepubertal high-fat n-3 PUFA exposure has opposite effects. To identify signaling pathways mediating these effects, we performed gene microarray(More)
  • 1