#### Filter Results:

- Full text PDF available (6)

#### Publication Year

2002

2003

- This year (0)
- Last 5 years (0)
- Last 10 years (0)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Anna Atramentov, Steven M. LaValle
- ICRA
- 2002

We present and implement an efficient algorithm for performing nearest-neighbor queries in topological spaces that usually arise in the context of motion planning. Our approach extends the Kd tree-based ANN algorithm, which was developed by Arya and Mount for Euclidean spaces. We argue the correctness of the algorithm and illustrate its efficiency through… (More)

- Anna Atramentov, Hector Leiva, Vasant Honavar
- ILP
- 2003

We describe an efficient implementation (MRDTL-2) of the Multirelational decision tree learning (MRDTL) algorithm [19] which in turn was based on a proposal by Knobbe et al. [15] We describe some simple techniques for speeding up the calculation of sufficient statistics for decision trees and related hypothesis classes from multi-relational data. Because… (More)

Recent advances in high throughput data acquisition, digital storage, and communications technologies have made it possible to gather very large amounts of data in many scientific and commercial domains. Much of this data resides in relational databases. Even when the data repository is not a relational database, it is often convenient to view heterogeneous… (More)

- Hector Leiva, Anna Atramentov, Vasant Honavar, Adrian Silvecu, Doina Caragea, Jun Zhang
- 2002

We describe experiments with an implementation of Multi-relational decision tree learning (MRDTL) algorithm for induction of decision trees from relational databases using an approach proposed by Knobbe et al. [1999a]. Our results show that the performance of MRDTL is competitive with that of other algorithms for learning classifiers from multiple relations… (More)

We present a general approach to speeding up a family of multi-relational data mining algorithms that construct and use selection graphs to obtain the information needed for building predictive models (e.g., decision tree classifiers) from relational database. Preliminary results of our experiments suggest that the proposed method can yield 1-2 orders of… (More)

Gathering huge amounts of complex information (data and knowledge) is very common nowadays. This calls for the necessity to represent, store and manipulate complex information (e.g. detect correlations and patterns, discover explanations, construct predictive models etc.). Furthermore, being autonomously maintained, data can change in time or even change… (More)

- ‹
- 1
- ›