Learn More
One of the main objectives in the analysis of microarray experiments is the identification of genes that are differentially expressed under two experimental conditions. This task is complicated by the noisiness of the data and the large number of genes that are examined simultaneously. Here, we present a novel technique for identifying differentially(More)
Full genome microarrays were used to assess transcriptional responses of Arabidopsis seedlings to changing external supply of the essential macronutrient potassium (K(+)). Rank product statistics and iterative group analysis were employed to identify differentially regulated genes and statistically significant coregulated sets of functionally related genes.(More)
Thellungiella halophila is a salt-tolerant relative of Arabidopsis thaliana with high genetic and morphological similarity. In a saline environment, T. halophila accumulates less sodium and retains more potassium than A. thaliana. Detailed electrophysiological comparison of ion currents in roots of both species showed that, unlike A. thaliana, T. halophila(More)
In arid and semi-arid environments, drought and soil salinity usually occur at the beginning and end of a plant's life cycle, offering a natural opportunity for the priming of young plants to enhance stress tolerance in mature plants. Chromatin marks, such as histone modifications, provide a potential molecular mechanism for priming plants to environmental(More)
Thellungiella halophila is a useful model species for research into plant salt tolerance. It is closely related to Arabidopsis thaliana, but shows considerably higher salt tolerance. Comparative analysis of ion homeostasis in the two species allows the identification of ion transport pathways that are critical for salt tolerance and provides the basis for(More)
BACKGROUND Mineral fertilization and pest control are essential and costly requirements for modern crop production. The two measures go hand in hand because plant mineral status affects plant susceptibility to pests and vice versa. Nutrient deficiency triggers specific responses in plants that optimize nutrient acquisition and reprogram metabolism.(More)
The ability to adjust growth and development to the availability of mineral nutrients in the soil is an essential life skill of plants but the underlying signaling pathways are poorly understood. In Arabidopsis thaliana, shortage of potassium (K) induces a number of genes related to the phytohormone jasmonic acid (JA). Using comparative microarray analysis(More)
BACKGROUND The biological interpretation of even a simple microarray experiment can be a challenging and highly complex task. Here we present a new method (Iterative Group Analysis) to facilitate, improve, and accelerate this process. RESULTS Our Iterative Group Analysis approach (iGA) uses elementary statistics to identify those functional classes of(More)
BACKGROUND One of the most time-consuming tasks after performing a gene expression experiment is the biological interpretation of the results by identifying physiologically important associations between the differentially expressed genes. A large part of the relevant functional evidence can be represented in the form of graphs, e.g. metabolic and signaling(More)
BACKGROUND Gene expression studies increasingly compare expression responses between different experimental backgrounds (genetic, physiological, or phylogenetic). By focusing on dynamic responses rather than a direct comparison of static expression levels, this type of study allows a finer dissection of primary and secondary regulatory effects in the(More)