Learn More
Desmin mutations underlie inherited myopathies/cardiomyopathies with varying severity and involvement of the skeletal and cardiac muscles. We developed a transgenic mouse model expressing low level of the L345P desmin mutation (DESMUT mice) in order to uncover changes in skeletal and cardiac muscles caused by this mutation. The most striking ultrastructural(More)
Mutations in the desmin gene have been recognized as a cause of desminopathy, a familial or sporadic disorder characterized by skeletal muscle weakness, often associated with cardiomyopathy or respiratory insufficiency. Distinctive histopathologic features include aberrant intracytoplasmic accumulation of desmin (DES). We present here comparative(More)
Several desmin mutations have been described in patients with cardiomyopathies and distal myopathies. Among them, A213V substitution has been associated with three completely different clinical phenotypes: restrictive cardiomyopathy, dilated cardiomyopathy and isolated distal myopathy. However, the identification of this substitution also in control(More)
The protein tyrosine phosphatase nonreceptor 22 gene (PTPN22) is an important negative regulator of signal transduction through the T-cell receptors (TCR). Recently a single-nucleotide polymorphism (SNP) 1858 C/T within this gene was shown to be a risk factor for several autoimmune diseases, such as rheumatoid arthritis (RA), Graves' Disease (GD), systemic(More)
Muscular dystrophies caused by defects in various genes are often associated with impairment of calcium homeostasis. Studies of calcium currents are hampered because of the lack of a robust cellular model. Primary murine myotubes, formed upon satellite cell fusion, were examined for their utilization as a model of adult skeletal muscle. We enzymatically(More)
Desmin is the major intermediate filament (IF) protein of muscle. Recently, mutations of the desmin gene have been reported to cause familial or sporadic forms of human skeletal, as well as cardiac, myopathy, termed desmin-related myopathy (DRM). The impact of any of these mutations on filament assembly and integration into the cytoskeletal network of(More)
Ribosomal RNA (rRNA) genes, whose activity results in nucleolus formation, constitute an extremely important part of genome. Despite the extensive exploration into avian genomes, no complete description of avian rRNA gene primary structure has been offered so far. We publish a complete chicken rRNA gene cluster sequence here, including 5'ETS (1836 bp), 18S(More)
Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied(More)
Various mutations in LMNA gene, encoding for nuclear lamin A/C protein, lead to laminopathies and contribute to over ten human disorders, mostly affecting tissues of mesenchymal origin such as fat tissue, muscle tissue, and bones. Recently it was demonstrated that lamins not only play a structural role providing communication between extra-nuclear(More)
We recently demonstrated that inherited disease-causing mutations clustered in the alpha-helical coiled-coil "rod" domain of the muscle-specific intermediate filament (IF) protein desmin display a wide range of inhibitory effects on regular in vitro assembly. In these studies, we showed that individual mutations exhibited phenotypes that were not, with(More)