Ann T Sutton

Learn More
Saccharomyces cerevisiae strains containing temperature-sensitive mutations in the SIT4 protein phosphatase arrest in late G1 at the nonpermissive temperature. Order-of-function analysis shows that SIT4 is required in late G1 for progression into S phase. While the levels of SIT4 do not change in the cell cycle, SIT4 associates with two(More)
The mammalian cytoplasmic protein SirT2 is a member of the Sir2 family of NAD+-dependent protein deacetylases involved in caloric restriction-dependent life span extension. We found that SirT2 and its yeast counterpart Hst2 have a strong preference for histone H4K16Ac in their deacetylation activity in vitro and in vivo. We have pinpointed the decrease in(More)
Homologs of the chromatin-bound yeast silent information regulator 2 (SIR2) protein are found in organisms from all biological kingdoms. SIR2 itself was originally discovered to influence mating-type control in haploid cells by locus-specific transcriptional silencing. Since then, SIR2 and its homologs have been suggested to play additional roles in(More)
The SAS2 gene is involved in transcriptional silencing in Saccharomyces cerevisiae. Based on its primary sequence, the Sas2 protein is predicted to be a member of the MYST family of histone acetyltransferases (HATs). Sas2 forms a complex with Sas4 and Sas5, which are required for its silencing function. Here we show that recombinant Sas2 has HAT activity(More)
It is well established that acetylation of histone and nonhistone proteins is intimately linked to transcriptional activation. However, loss of acetyltransferase activity has also been shown to cause silencing defects, implicating acetylation in gene silencing. The something about silencing (Sas) 2 protein of Saccharomyces cerevisiae, a member of the MYST(More)
Transcription of the four yeast histone gene pairs (HTA1-HTB1, HTA2-HTB2, HHT1-HHF1, and HHT2-HHF2) is repressed during G1, G2, and M. For all except HTA2-HTB2, this repression requires several trans-acting factors, including the products of the HIR genes, HIR1, HIR2, and HIR3. ASF1 is a highly conserved protein that has been implicated in transcriptional(More)
In Saccharomyces cerevisiae, the RNA levels of the G1 cyclins CLN1, CLN2, and HCS26 increase dramatically during the late G1 phase of the cell cycle. The SIT4 gene, which encodes a serine/threonine protein phosphatase, is required for the normal accumulation of CLN1, CLN2, and HCS26 RNAs during late G1. This requirement for SIT4 in normal G1 cyclin RNA(More)
In the yeast Saccharomyces cerevisiae, a and alpha mating-type information is stored in transcriptionally silenced cassettes called HML and HMR. Silencing of these loci, maintained by the formation of a specialized type of heterochromatin, requires trans-acting proteins and cis-acting elements. Proteins required for silencing include the Sir2(More)
Histone modification represents a universal mechanism for regulation of eukaryotic gene expression underlying diverse biological processes from neuronal gene expression in mammals to control of flowering in plants. In animal cells, these chromatin modifications are effected by well-defined multiprotein complexes containing specific histone-modifying(More)