Learn More
Targeted ablation of the surfactant protein D (SP-D) gene caused chronic inflammation, emphysema, and fibrosis in the lungs of SP-D (-/-) mice. Although lung morphology was unperturbed during the first 2 weeks of life, airspace enlargement was observed by 3 weeks and progressed with advancing age. Inflammation consisted of hypertrophic alveolar macrophages(More)
Granulocyte-macrophage colony-stimulating factor (GM-CSF) gene-targeted mice (GM-/-) cleared group B streptococcus (GBS) from the lungs more slowly than wild-type mice. Expression of GM-CSF in the respiratory epithelium of GM-/- mice improved bacterial clearance to levels greater than that in wild-type GM+/+ mice. Acute aerosolization of GM-CSF to GM+/+(More)
Pulmonary surfactant protein A (SP-A), a member of the collectin family, plays an important role in innate immune defense of the lung. In this study, we examined the role of SP-A in modulating complement receptor-mediated phagocytosis. Complement receptors (CR), CR3 (CD11b), and CR4 (CD11c) were expressed at reduced levels on the surface of alveolar(More)
To determine the role of surfactant protein-A (SP-A) in host defense, the murine SP-A locus was targeted by homologous recombination to produce mice lacking SP-A. SP-A-/- and wild-type mice were infected with mucoid Pseudomonas aeruginosa by intratracheal instillation. Pulmonary bacterial loads were greater in SP-A-/- than in wild-type mice, with increased(More)
Mice lacking surfactant protein (SP)-A (SP-A-/-) or SP-D (SP-D-/-) and wild-type mice were infected with group B streptococcus or Haemophilus influenzae by intratracheal instillation. Although decreased killing of group B streptococcus and H. influenzae was observed in SP-A-/- mice but not in SP-D-/- mice, deficiency of either SP-A or SP-D was associated(More)
To determine the role of surfactant protein A (SP-A) in host defense, the murine SP-A locus was targeted by homologous recombination to produce mice lacking SP-A. SP-A -/- and control mice were infected with group B streptococcus (GBS) by intratracheal instillation. Pulmonary infiltration 6 and 24 h following infection was more severe in SP-A -/- than in(More)
To determine the role of surfactant protein-A(SP-A) in antiviral host defense, mice lacking SP-A (SP-A-/-) were produced by targeted gene inactivation. SP-A-/- and control mice (SP-A+/+) were infected with respiratory syncytial virus (RSV) by intratracheal instillation. Pulmonary infiltration after infection was more severe in SP-A-/- than in SP-A+/+ mice(More)
Mice lacking surfactant protein surfactant protein D (SP-D(-/-)) and wild-type mice (SP-D(+/+)) were infected with influenza A virus (IAV) by intranasal instillation. IAV infection increased the endogenous SP-D concentration in wild-type mice. SP-D-deficient mice showed decreased viral clearance of the Phil/82 strain of IAV and increased production of(More)
Surfactant protein-A (SP-A) gene-targeted mice clear group B streptococcus (GBS) from the lungs at a slower rate than wild-type mice. To determine mechanisms by which SP-A enhances pulmonary clearance of GBS, the role of SP-A in binding and phagocytosis of GBS was assessed in SP-A (-/-) mice infected with GBS in the presence and absence of exogenous SP-A.(More)
Surfactant proteins A and D (SP-A and SP-D) are members of the collectin family of polypeptides expressed in the respiratory tract that bind bacterial, fungal and viral pathogens, enhancing their opsonization and killing by phagocytic cells. Clearance of bacterial pathogens including group B streptococci, Haemophilus influenza, Pseudomonas aeruginosa and(More)