Learn More
BACKGROUND Insulin resistance has a causal role in type 2 diabetes. Serum levels of retinol-binding protein 4 (RBP4), a protein secreted by adipocytes, are increased in insulin-resistant states. Experiments in mice suggest that elevated RBP4 levels cause insulin resistance. We sought to determine whether serum RBP4 levels correlate with insulin resistance(More)
Retinol-binding protein 4 (RBP4), the sole retinol transporter in blood, is secreted from adipocytes and liver. Serum RBP4 levels correlate highly with insulin resistance, other metabolic syndrome factors, and cardiovascular disease. Elevated serum RBP4 causes insulin resistance, but the molecular mechanisms are unknown. Here we show that RBP4 induces(More)
OBJECTIVE We examined preadipocyte differentiation in obese and nonobese individuals and the effect of cytokines and wingless-type MMTV (mouse mammary tumor virus) integration site family, member 3A (Wnt3a) protein on preadipocyte differentiation and phenotype. RESEARCH DESIGN AND METHODS Abdominal subcutaneous adipose tissue biopsies were obtained from a(More)
AIMS/HYPOTHESIS A recent genome-wide association study identified the SLC30A8 rs13266634 polymorphism encoding an Arg325Trp polymorphism in the zinc transporter protein member 8 (ZnT-8) to be associated with type 2 diabetes. Here, we investigate whether the polymorphism is related to altered insulin release in response to intravenous and oral glucose loads(More)
The metabolic syndrome is associated with a dysregulated adipose tissue; in part a consequence of adipose cell enlargement and the associated infiltration of macrophages. Adipose cell enlargement leads to a proinflammatory state in the cells with reduced secretion of adiponectin and with increased secretion of several cytokines and chemokines including(More)
Obesity is associated mainly with adipose cell enlargement in adult man (hypertrophic obesity), whereas the formation of new fat cells (hyperplastic obesity) predominates in the prepubertal age. Adipose cell size, independent of body mass index, is negatively correlated with whole body insulin sensitivity. Here, we review recent findings linking(More)
Increased adipose tissue lipogenesis is associated with enhanced insulin sensitivity. Mice overexpressing the Glut4 glucose transporter in adipocytes have elevated lipogenesis and increased glucose tolerance despite being obese with elevated circulating fatty acids. Lipidomic analysis of adipose tissue revealed the existence of branched fatty acid esters of(More)
OBJECTIVE Disturbances in mineral metabolism define an increased cardiovascular risk in patients with chronic kidney disease. Fibroblast growth factor-23 (FGF23) is a circulating regulator of phosphate and vitamin D metabolism and has recently been implicated as a putative pathogenic factor in cardiovascular disease. Because other members of the FGF family(More)
The WNT16 locus is a major determinant of cortical bone thickness and nonvertebral fracture risk in humans. The disability, mortality and costs caused by osteoporosis-induced nonvertebral fractures are enormous. We demonstrate here that Wnt16-deficient mice develop spontaneous fractures as a result of low cortical thickness and high cortical porosity. In(More)
UNLABELLED BACKGROUND Obesity contributes to Type 2 diabetes by promoting systemic insulin resistance. Obesity causes features of metabolic dysfunction in the adipose tissue that may contribute to later impairments of insulin action in skeletal muscle and liver; these include reduced insulin-stimulated glucose transport, reduced expression of GLUT4,(More)