Learn More
A brief survey of research in the development of autonomy in wheelchairs is presented and AAI's R&D to build a series of intelligent autonomous wheelchairs is discussed. A standardized autonomy management system that can be installed on readily available power chairs which have been well-engineered over the years has been developed and tested. A(More)
The thymus is the most rapidly aging tissue in the body, with progressive atrophy beginning as early as birth and not later than adolescence. Latent regenerative potential exists in the atrophic thymus, because certain stimuli can induce quantitative regrowth, but qualitative function of T lymphocytes produced by the regenerated organ has not been fully(More)
Interaction of hematopoietic progenitors with the thymic microenvironment induces them to proliferate, adopt the T lineage fate, and asymmetrically diverge into multiple functional lineages. Progenitors at various developmental stages are stratified within the thymus, implying that the corresponding microenvironments provide distinct sets of signals to(More)
The thymus is composed of multiple stromal elements comprising specialized stromal microenvironments responsible for the development of self-tolerant and self-restricted T cells. Here, we investigated the ontogeny and maturation of the thymic vasculature. We show that endothelial cells initially enter the thymus at E13.5, with PDGFR-β(+) mesenchymal cells(More)
Embryos that are homozygous for Splotch, a null allele of Pax3, have a severe neural crest cell (NCC) deficiency that generates a complex phenotype including spina bifida, exencephaly and cardiac outflow tract abnormalities. Contrary to the widely held perception that thymus aplasia or hypoplasia is a characteristic feature of Pax3(Sp/Sp) embryos, we find(More)
T lymphocytes are essential mediators of immunity that are produced by the thymus in proportion to its size. The thymus atrophies rapidly with age, resulting in progressive diminution of new T cell production. This decreased output is compensated by duplication of existing T cells, but it results in gradual dominance by memory T cells and decreased ability(More)
Each year, civilian accidental injury results in 150,000 deaths and 400,000 permanent disabilities in the United States alone. The timely creation of and access to dynamically updated trauma patient information at the point of injury is critical to improving the state of care. Such information is often non-existent, incomplete, or inaccurate, resulting in(More)