Learn More
Agrobacterium tumefaciens is the preferred method for transformation of a wide range of plant species. Commonly, the genes to be transferred are cloned between the left and right T-DNA borders of so-called binary T-DNA vectors that can replicate both in E. coli and Agrobacterium. Because these vectors are generally large, cloning can be time-consuming and(More)
An evaluation was performed of the potential use of AFLP markers to reveal polymorphisms among Lolium perenne plants with different degrees of kinship. Radioactive and fluorescent detection techniques were applied. The use of a fluorescent detection approach contributed greatly to the speed and ease of conducting and interpreting the AFLP patterns. The(More)
The freeze thaw transfection procedure of Dityatkin et al. (1972) was adapted for the transfection and transformation of A. tumefaciens. Transfection of the strains B6S3 and B6-6 with DNA of the temperate phage PS8cc186 yielded a maximum frequency of 2 10-7 transfectants per total recipient population. In transformation of the strain GV3100 with the P type(More)
The DNA sequence of the nopaline synthase gene (nos) from Agrobacterium tumefaciens Ti plasmid pTiT37 and adjacent regions up to the right border of the T-DNA was determined. The 5' and 3' termini of the polyadenylated nos mRNA, isolated from a T37 tobacco teratoma tumor line, were localized by S1 mapping. The final mRNA is unspliced, encoded by a region of(More)
Over the past decade, several high value proteins have been produced in different transgenic plant tissues such as leaves, tubers, and seeds. Despite recent advances, many heterologous proteins accumulate to low concentrations, and the optimization of expression cassettes to make in planta production and purification economically feasible remains critical.(More)
Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species,(More)
After Agrobacterium-mediated plant transformation, multiple T-DNAs frequently integrate at the same position in the plant genome, resulting in the formation of inverted and direct repeats. Because these inverted repeats cannot be amplified and analyzed by PCR, Arabidopsis root cells were co-transformed with two different T-DNAs with distinct sequences(More)
Endogenous plant genes or transgenes can be silenced on introduction of homologous gene sequences. Here we document a reporter gene-silencing event in Nicotiana tabacum that has a distinctive combination of features--i.e., (i) silencing occurs by a posttranscriptional process, (ii) silencing correlates with DNA methylation, and (iii) this de novo(More)
Nicotiana protoplasts and Arabidopsis leaf discs or roots were co-cultivated with two Agrobacterium strains each carrying a different T-DNA. Co-transformed plants were selected and the integration of the different T-DNAs was analysed at the genetic and genomic level. Genetic analysis showed that the T-DNAs derived from different bacteria were frequently(More)