Ann-Britt Marcher

Learn More
The acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor is an intracellular protein that binds C(14)-C(22) acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however, little is known about the in vivo function in mammalian(More)
The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling with age. Morphology and development of skin and appendages(More)
We previously reported that mice deficient in acyl-CoA-binding protein (ACBP) display a delayed metabolic adaptation to weaning. This includes a delayed activation of the hepatic lipogenic gene program, which may result from hepatic accumulation of triacylglycerol and/or cholesteryl esters in the late suckling period. To further investigate the basis for(More)
Cold exposure greatly alters brown adipose tissue (BAT) gene expression and metabolism to increase thermogenic capacity. Here, we used RNA sequencing and mass-spectrometry-based lipidomics to provide a comprehensive resource describing the molecular signature of cold adaptation at the level of the transcriptome and lipidome. We show that short-term (3-day)(More)
Acyl-CoA binding protein (ACBP) is a small, ubiquitously expressed intracellular protein that binds C14-C22 acyl-CoA esters with very high affinity and specificity. We have recently shown that targeted disruption of the Acbp gene leads to a compromised epidermal barrier and that this causes delayed adaptation to weaning, including the induction of the(More)
Diazepam is well known for its anxiolytic properties, which are mediated via activation of the GABAA receptor. Diazepam Binding Inhibitor (DBI), also called acyl-CoA binding protein (ACBP), is a ubiquitously expressed protein originally identified based on its ability to displace diazepam from its binding site on the GABAA receptor. Central administration(More)
  • 1