Learn More
In a cell culture of Saccharomyces cerevisiae exponentially growing in basal medium, only 0.02% of the cells were osmotolerant, i.e., survived transfer to medium containing 1.4 M NaCl. Short-time conditioning in 0.7 M NaCl medium transformed the whole population into an osmotolerance phenotype. During this conditioning, the rate of formation of glycerol,(More)
A glycerol-nonutilizing mutant of the salt-tolerant yeast Debaryomyces hansenii was isolated. When subjected to salt stress the mutant produced glycerol, and the internal level of glycerol increased linearly in proportion to increases of external salinity as in the wild-type strain. However, at increased salinity the mutant showed a more pronounced decrease(More)
This review describes the metabolic alterations and adaptations of yeast cells in response to osmotic stress. The basic theme of the cellular response is known to be exclusion of the extracellular stress agent salt and intracellular accumulation of the compatible solute glycerol. Molecular details of these basic processes are currently rather well known.(More)
N-terminal acetylation can occur cotranslationally on the initiator methionine residue or on the penultimate residue if the methionine is cleaved. We investigated the three N-terminal acetyltransferases (NATs), Ard1p/Nat1p, Nat3p and Mak3p. Ard1p and Mak3p are significantly related to each other by amino acid sequence, as is Nat3p, which was uncovered in(More)
The existence of specific dl-glycerol-3-phosphatase (EC 3.1.3.21) activity in extracts of Saccharomyces cerevisiae was confirmed by examining strains lacking nonspecific acid and alkaline phosphatase activities. During purification of the glycerol-3-phosphatase, two isozymes having very similar molecular weights were isolated by gel filtration and anion(More)
The salt-instigated protein expression of Saccharomyces cerevisiae during growth in either 0.7 or 1.4 M NaCl was studied by two-dimensional polyacrylamide gel electrophoresis. The 73 protein spots that were identified as more than 3-fold responsive in 1.4 M NaCl were further grouped by response class (halometric, low-salt, and high-salt regulation). Roughly(More)
Exponentially growing Saccharomyces cerevisiae was challenged to increased salinity by transfer to 0.7 M NaCl medium, and changes in protein synthesis were examined during the 1st h of adaptation by use of two-dimensional gel electrophoresis coupled to computerized quantification. An impressive number of proteins displayed changes in the relative rate of(More)
The influence of cAMP-dependent protein kinase (PKA) on protein expression during exponential growth under osmotic stress was studied by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). The responses of isogenic strains (tpk2Deltatpk3Delta) with either constitutively low (tpk1(w1)), regulated (TPK1) or constitutively high (TPK1bcy1Delta) PKA(More)
The proteome of the yeast Saccharomyces cerevisiae was analysed by two-dimensional (2D) polyacrylamide gel electrophoresis utilizing a non-linear immobilized pH gradient (3-10) in the first-dimensional separation. Cells were labelled by [35S]methionine incorporation in the respiro-fermentative phase during exponential growth on glucose. Gels were run,(More)