Learn More
OBJECTIVE It is still not known whether the glial cell activation of locus coeruleus (LC) is involved in the neurophysiologic mechanism of the acute phase of heart disease. The aim of this study was to investigate whether the glial cell activation of LC responds to acute cardiac injury (ACI). METHODS In this study, ACI was established by intramyocardial(More)
Bone marrow mesenchymal stem cells (BMMSCs) are ideal seed cells for tissue engineering and regenerative medicine. Many studies have shown that 5-azacytidine (5-aza) can induce BMMSCs to differentiate into cardiomyogenic cells, but some issues still remain to be resolved. In this study, we investigated the effects of angiotensin II (Ang II) on the(More)
To explore the feasibility of constructing engineered myocardial tissues (EMTs) in vivo, using polylactic acid -co-glycolic acid (PLGA) for scaffold and cardiomyocyte-like cells derived from bone marrow mesenchymal stem cells (BMMSCs) for seeded cells. BMMSCs were isolated from femur and tibia of Sprague-Dawley (SD) rats by density-gradient centrifugation.(More)
Vascular calcification is associated with cardiovascular disease as a complication of hypertension, hyperlipidemia, diabetes mellitus, and chronic kidney disease. Vitamin K2 (VK2) delays vascular calcification by an unclear mechanism. Moreover, apoptosis modulates vascular smooth muscle cell (VSMC) calcification. This paper aimed to study VK2-modified VSMC(More)
  • 1