Learn More
The embryonic stem cell test (EST) takes advantage of the potential of murine embryonic stem (ES) cells to differentiate in culture to test embryotoxicity in vitro. The EST represents a reliable, scientifically validated in vitro system for the classification of compounds according to their teratogenic potential based on the morphological analysis of(More)
The embryonic stem cell test (EST) takes advantage of the potential of murine embryonic stem (ES) cells to differentiate in culture to test embryotoxicity in vitro. The EST represents a scientifically validated in vitro system for the classification of compounds according to their teratogenic potential based on the morphological analysis of beating(More)
Mouse embryonic stem cells (mESCs) represent an attractive cellular system for in vitro studies in developmental biology as well as toxicology because of their potential to differentiate into all fetal cell lineages. The present study aims to establish an in vitro system for developmental neurotoxicity testing employing mESCs. We developed a robust and(More)
The embryonic stem cell test (EST) is an in vitro assay that has been developed to assess the teratogenic and embryotoxic potential of drugs and chemicals. It is based on the capacity of murine ES cells (cell line D3) to differentiate into contracting myocardial cells under specific cell culture conditions. The appearance of beating cardiomyocytes in(More)
The embryonic stem cell test (EST) represents a reliable, scientifically validated in vitro system for the detection and classification of compounds according to their teratogenic potency. However, some serious issues were frequently raised against the widespread implementation and practicability of the EST in its original version. Most importantly, the(More)
Teratogenicity can be predicted in vitro using the embryonic stem cell test (EST). The EST, which is based on the morphometric measurement of cardiomyocyte differentiation and cytotoxicity parameters, represents a scientifically validated method for the detection and classification of chemicals according to their teratogenic potency. Furthermore, an(More)
Blastocyst-derived pluripotent embryonic stem (ES) cells of the mouse can be induced to differentiate in culture into a variety of cell types, including cardiac muscle cells. In the embryonic stem cell test (EST) the capacity of ES cells of the mouse cell line D3 to differentiate into contracting cardiomyocytes is used to assess the embryotoxic potential of(More)
The development of the nervous system is a rather complex process known to be affected by different drugs and chemicals. Therefore, regulatory test guidelines have been adopted for the prediction and assessment of developmental neurotoxicity (U.S.EPA OPPTS 870.6300 and OECD TG 426). However, current in vivo test methods are laborious, costly and necessitate(More)
  • 1