Anja Seybert

Learn More
Cryo-electron tomography (CET) is currently the only three-dimensional imaging technique capable of visualizing macromolecules in their cellular context at close-to-native conditions with a resolution in the nanometer range. An important component for the analysis of the data is their classification, which should discriminate among various macromolecules,(More)
The aggregation of proteins as a result of intrinsic or environmental stress may be cytoprotective, but is also linked to pathophysiological states and cellular ageing. We analysed the principles of aggregate formation and the cellular strategies to cope with aggregates in Escherichia coli using fluorescence microscopy of thermolabile reporters, EM(More)
Bacteria of the genus Mycoplasma lack obvious homologs of prokaryotic or eukaryotic cytoskeletal, as well as motility-related genes (except FtsZ). Nevertheless, they maintain characteristic cell shapes and show adhesion and gliding abilities on both artificial surfaces and cells. Earlier genetic, biochemical, and electron microscopic analyses have shown(More)
Correlative microscopy incorporates the specificity of fluorescent protein labeling into high-resolution electron micrographs. Several approaches exist for correlative microscopy, most of which have used the green fluorescent protein (GFP) as the label for light microscopy. Here we use chemical tagging and synthetic fluorophores instead, in order to achieve(More)
Cryo-electron tomography of vitreous sections is currently the most promising technique for visualizing arbitrary regions of eukaryotic cells or tissue at molecular resolution. Despite significant progress in the sample preparation techniques over the past few years, the three dimensional reconstruction using electron tomography is not as simple as in(More)
Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble(More)
In electron tomography the sample is tilted in the electron microscope and projections are recorded at different viewing angles. In the correct geometric setting, the tilt-axis of the object under scrutiny is perpendicular to the beam direction. However, we will demonstrate that this does not necessarily apply to all electron microscopes equipped with the(More)
RNA polymerase I (Pol I) is a highly processive enzyme that transcribes ribosomal DNA (rDNA) and regulates growth of eukaryotic cells. Crystal structures of free Pol I from the yeast Saccharomyces cerevisiae have revealed dimers of the enzyme stabilized by a 'connector' element and an expanded cleft containing the active centre in an inactive conformation.(More)
During product development there is a need for quick, reliable methods to predict noise radiated from real structures such as machinery, appliances, and office products. However, finite element and boundary element analyses require repeated solutions of large models even for small design changes. The efficiency of calculating radiated noise may be improved(More)