Anja Kuthning

Learn More
Lantibiotics are an important class of ribosomally synthesised peptide antibiotics with a remarkable pharmacological potential. Structural variants of lantibiotics generated by peptide engineering in vivo are an important aspect for improving the peptide’s efficacy, stability and bioavailability as well as production titre, which severely impacts the(More)
Expanded repetoire: Synthetic amino acids translated into propeptides dramatically increase the chemical diversity of the two-component lantibiotic lichenicidin. This opens new routes towards novel and unique peptide antibiotic sequences, which could display features important for medical applications.
Expansion of the structural diversity of peptide antibiotics was performed through two different methods. Supplementation-based incorporation (SPI) and stop-codon suppression (SCS) approaches were used for co-translational incorporation of isostructural and orthogonal noncanonical amino acids (ncAAs) into the lasso peptide capistruin. Two ncAAs were(More)
Genetic code engineering that enables reassignment of genetic codons to non-canonical amino acids (ncAAs) is a powerful strategy for enhancing ribosomally synthesized peptides and proteins with functions not commonly found in Nature. Here we report the expression of a ribosomally synthesized and post-translationally modified peptide (RiPP), the 32-mer(More)
The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the(More)
  • 1