Learn More
Based on molecular data three major clades have been recognized within Bilateria: Deuterostomia, Ecdysozoa, and Spiralia. Within Spiralia, small-sized and simply organized animals such as flatworms, gastrotrichs, and gnathostomulids have recently been grouped together as Platyzoa. However, the representation of putative platyzoans was low in the respective(More)
About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was(More)
Diurodrilidae is a taxon of Lophotrochozoa comprising about six, exclusively interstitial species, which are up to 500μm long and dorsoventrally flattened. Traditionally, Diurodrilidae had been regarded as an annelid family. However, recently Diurodrilidae had been excluded from Annelida and been placed in closer relationship to platyzoan taxa based on both(More)
Gnathostomulida is a taxon of small marine worms, which exclusively inhabit the interstitium. The evolution of Gnathostomulida has been discussed for decades. Originally regarded as primitive animals with affinities to flatworms, the phylogenetic position of Gnathostomulida has been debated. Given the lack of an anus a close relationship to Platyhelminthes(More)
Deuterostomia, one of the three major lineages of Bilateria, comprises many well-known animals such as vertebrates, sea squirts, sea stars and sea urchins. Whereas monophyly of Deuterostomia and several subtaxa is well supported, the relationships of these to each other and, hence, deuterostome relationships are still uncertain. To address these issues in(More)
BACKGROUND For phylogenetic reconstructions, conflict in signal is a potential problem for tree reconstruction. For instance, molecular data from different cellular components, such as the mitochondrion and nucleus, may be inconsistent with each other. Mammalian studies provide one such case of conflict where mitochondrial data, which display compositional(More)
Many animals permanently inhabit the marine interstitium, the space between sand grains [1, 2]. Different evolutionary scenarios may explain the existence of interstitial animals [3, 4]. These scenarios include (1) that the interstitial realm is the ancestral habitat of bilaterians [5, 6], (2) that interstitial taxa evolved from larger ancestors by(More)
Annelida is a highly diverse animal group with over 21,000 described species. As part of Lophotrochozoa, the vast majority of annelids are currently classified into two groups: Errantia and Sedentaria, together forming Pleistoannelida. Besides these taxa, Sipuncula, Amphinomidae, Chaetopteridae, Oweniidae and Magelonidae can be found branching at the base(More)
Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride, Atmos. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract. Carbon tetrachloride (CCl 4) has substantial strato-spheric ozone depletion potential and(More)
Complete mitochondrial genomes of five syllids (Streptosyllis sp., Eusyllis blomstrandi, Myrianida brachycephala, Typosyllis antoni and Typosyllis sp.) have been obtained using Illumina sequencing. Together with two previous studied taxa (Ramisyllis multicaudata and Trypanobia cryptica), the analysed sequences represent most of the main lineages within the(More)