Anita Wiśniewska

Learn More
Somatic embryos obtained in vitro are a form of vegetative reproduction that can be used in artificial seed technology, as well as a model to study the principles of plant development. In order to isolate the genes involved in somatic embryogenesis of the cucumber (Cucumis sativus L.), we utilized the suppression subtractive hybridization (SSH). One of the(More)
Cyanamide (CA) has been reported as a natural compound produced by hairy vetch (Vicia villosa Roth.) and it was shown also to be an allelochemical, responsible for strong allelopathic potential in this species. CA phytotoxicity has been demonstrated on various plant species, but to date little is known about its mode of action at cellular level. Treatment(More)
In this work we show how three types of cucumber in vitro cultures – leaf callus culture, cytokinin dependent cell suspension and liquid culture of meristematic clumps – influence the metabolite profiles of plants in the first generative progeny. Based on this study we conclude that there exists a specific and inheritable metabolic fingerprint reflecting(More)
Somaclonal variation commonly occurs duringin vitro plant regeneration and may introduce unintended changes in numerous plant characters. In order to assess the range of tissue-culture-responsive changes on the biochemical level, the metabolic profiles of diploid and tetraploid cucumber R1 plants regenerated from leaf-derived callus were determined. Gas(More)
Somatic embryogenesis is a method of plant regeneration, but it can also be used as a model to study plant development. A normalized library of cDNA fragments representing genes up-regulated after the induction of somatic embryogenesis in cucumber suspension cultures was constructed using the suppression subtractive hybridization technique. Candidate cDNA(More)
The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant–nematode(More)
Drought affects many physiological processes, which influences plant productivity. The aim of this study was to evaluate the degree of genotypic diversity in drought tolerance of sugar beet genotypes (Beta vulgaris L.) in connection with their genetic distance. Three hybrid genotypes produced by crossing double haploid genotype (P-pollinator) with(More)
Somatic embryogenesis (SE) in plants can be used as a model for studying genes engaged in the embryogenic transition of somatic cells. The CsSCARECROW (CsSCR) gene was previously identified among a panel of genes upregulated after the induction of SE in cucumber (Cucumis sativus). The putative CsSCR protein contains conserved GRAS family domains and is(More)
Plant-parasitic nematodes cause significant damage to major crops throughout the world. The small number of genes conferring natural plant resistance and the limitations of chemical control require the development of new protective strategies. RNA interference or the inducible over-expression of nematicidal genes provides an environment-friendly approach to(More)
  • 1