Learn More
G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor(More)
PURPOSE To use a previously developed CoMFA model to design a series of new structures of high selectivity and efficacy towards the beta(2)-adrenergic receptor. RESULTS Out of 21 computationally designed structures 6 compounds were synthesized and characterized for beta(2)-AR binding affinities, subtype selectivities and functional activities. (More)
The β₂-adrenergic receptor (β₂-AR) agonist [(3)H]-(R,R')-methoxyfenoterol was employed as the marker ligand in displacement studies measuring the binding affinities (Ki values) of the stereoisomers of a series of 4'-methoxyfenoterol analogs in which the length of the alkyl substituent at α' position was varied from 0 to 3 carbon atoms. The binding(More)
The computational approach applicable for the molecular dynamics (MD)-based techniques is proposed to predict the ligand-protein binding affinities dependent on the ligand stereochemistry. All possible stereoconfigurations are expressed in terms of one set of force-field parameters [stereoconfiguration-independent potential (SIP)], which allows for(More)
A review of a certain class of theoretical models describing the kinetics of pollutants sorption onto various sorbents is presented. These assuming the rate of surface reaction as the rate-limiting step are considered. A special attention is paid to possible theoretical grounds of the most commonly applied mathematical expressions, such as the pseudo-second(More)
The understanding of β₂-adrenergic receptor (β₂AR) interactions with ligands as well as the mechanism of receptor activation changed radically from 2007, when the first crystallographic structure of the receptor was reported. Since then numerous crystallographic studies described interactions with all main classes of β₂AR ligands and with G proteins, which(More)
The β(2) adrenergic receptor (β(2)-AR) is a model system for studying the ligand recognition process in G protein-coupled receptors. Fenoterol (FEN) is a β(2)-AR selective agonist that has two centers of chirality and exists as four stereoisomers. Radioligand binding studies determined that stereochemistry greatly influences the binding affinity. Subsequent(More)
The β2 adrenergic receptor (β2-AR) has become a model system for studying the ligand recognition process and mechanism of the G protein coupled receptors activation. In the present study stereoisomers of fenoterol and some of its derivatives (N = 94 molecules) were used as molecular probes to identify differences in stereo-recognition interactions between(More)
The chiral recognition mechanisms responsible for the enantioselective binding on the alpha3beta4 nicotinic acetylcholine receptor (alpha3 beta4 nAChR) and human organic cation transporter 1 (hOCT1) have been reviewed. The results indicate that chiral recognition on the alpha3beta4 nAChR is a process involving initial tethering of dextromethorphan and(More)
Cannabinoid and adrenergic receptors belong to the class A (similar to rhodopsin) G protein coupled receptors. Docking of agonists and antagonists to CB(1) and CB(2) cannabinoid receptors revealed the importance of a centrally located rotamer toggle switch and its possible participation in the mechanism of agonist/antagonist recognition. The switch is(More)