Anita Lloyd Spetz

Learn More
Epitaxially grown single layer and multi layer graphene on SiC devices were fabricated and compared for response towards NO 2. Due to electron donation from SiC, single layer graphene is n-type with a very low carrier concentration. The choice of substrate is demonstrated to enable tailoring of the electronic properties of graphene, with a SiC substrate(More)
In this paper temperature modulation and gate bias modulation of a gas sensitive field effect transistor based on silicon carbide (SiC-FET) are combined in order to increase the selectivity. Data evaluation based on extracted features describing the shape of the sensor response was performed using multivariate statistics, here by Linear Discriminant(More)
A silicon carbide based field effect transistor (SiC-FET) structure was used for methanol sensing. Due to the chemical stability and wide band gap of SiC, these sensors are suitable for applications over a wide temperature range. Two different catalytic metals, Pt and Ir, were tested as gate contacts for detection of methanol. The sensing properties of both(More)
Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides, 2015, Physical Review B. Two-dimensional (2D) materials, especially their most prominent member, graphene, have greatly influenced many scientific areas. Moreover, they have become a base for investigating the relativistic properties of(More)
Gas sensitive FETs based on SiC have been studied for the discrimination and quantification of hazardous volatile organic compounds (VOCs) in the low ppb range. The sensor performance was increased by temperature cycled operation (TCO) and data evaluation based on multivariate statistics, here Linear Discriminant Analysis (LDA). Discrimination of(More)
Thermal power plants produce SO 2 during combustion of fuel containing sulfur. One way to decrease the SO 2 emission from power plants is to introduce a sensor as part of the control system of the desulphurization unit. In this study, SiC-FET sensors were studied as one alternative sensor to replace the expensive FTIR (Fourier Transform Infrared) instrument(More)
Zinc oxide is an interesting material for bio and chemical sensors. It is a semiconducting metal oxide with potential as an integrated multisensing sensor platform, which simultaneously detects parameters like change in field effect, mass and surface resistivity. In this investigation we have used resistive sensor measurements with respect to oxygen(More)
Gas sensitive field effect transistors based on silicon carbide, SiC-FETs, have been studied for indoor air quality applications. The selectivity of the sensors was increased by temperature cycled operation, TCO, and data evaluation based on multivariate statistics. Discrimination of benzene, naphthalene, and formaldehyde independent of the level of(More)
Lab-on-CMOS chips (LOCMOS) are sophisticated miniaturized analysis tools based on integrated circuit (IC) microchips performing various laboratory functions. We have developed a low temperature co-fired ceramic (LTCC) package for a LOCMOS application regarding cytotoxicity assessment of nanomaterials. The LTCC packaged capacitance sensor chip is designed(More)