Anita Dolly Panek

Learn More
Water is usually thought to be required for the living state, but several organisms are capable of surviving complete dehydration (anhydrobiotes). Elucidation of the mechanisms of tolerance against dehydration may lead to development of new methods for preserving biological materials that do not normally support drying, which is of enormous practical(More)
BACKGROUND Quinones are compounds extensively used in studies of oxidative stress due to their role in plants as chemicals for defense. These compounds are of great interest for pharmacologists and scientists, in general, because several cancer chemotherapeutic agents contain the quinone nucleus. However, due to differences in structures and diverse(More)
Eukaryotic cells have developed mechanisms to rapidly respond towards the environment by changing the expression of a series of genes. There is increasing evidence that reactive oxygen species (ROS), besides causing damage, may also fulfill an important role as second messengers involved in signal transduction. Recently, we have demonstrated that deletion(More)
Based on the well-documented notion that oxygen affects the stability of dried cells, the role of the cytosolic and mitochondrial forms of superoxide dismutase (Sod) in the capacity of cells to resist dehydration was examined. Both enzymes are important for improving survival, and the absence of only 1 isoform did not impair tolerance against dehydration.(More)
The effect of ethanol on stability of intact yeast cells has been investigated. Several strains with differences in trehalose metabolism were examined for their ability to survive in the presence of 10% (v/v) ethanol. A positive correlation was observed between cell viability and trehalose concentration. When leakage of electrolytes from the cells was(More)
Establishing the function of trehalose in yeast cells has led us, over the years, through a long path—from simple energy storage carbohydrate, then a stabilizer and protector of membranes and proteins, through a safety valve against damage caused by oxygen radicals, up to regulator of the glycolytic path. In addition, trehalose biosynthesis has been(More)
Aiming to clarify the mechanisms by which eukaryotes acquire tolerance to oxidative stress, adaptive and cross-protection responses to oxidants were investigated in Saccharomyces cerevisiae. Cells treated with sub-lethal concentrations of menadione (a source of superoxide anions) exhibited cross-protection against lethal doses of peroxide; however, cells(More)
Yeast cells are well known for their ability to survive complete dehydration, a phenomenon that is directly linked to the presence of the sugar trehalose in these cells. This sugar apparently endows the cells with the capacity to survive dehydration. Previous studies on in vitro models showed that trehalose must be present on both sides of the bilayer to(More)
Yeast cells accumulate the disaccharide trehalose in response to certain stress conditions. In an attempt to verify the role that trehalose plays when yeast cells are faced with heat stress, yeast mutant strains with specific lesions in trehalose metabolism were used. Cultures growing exponentially on glucose were shifted from 28 to 40 degrees C for 1 h.(More)
Aiming to focus the protective role of the sugar trehalose under oxidative conditions, two sets of Saccharomyces cerevisiae strains, having different profiles of trehalose synthesis, were used. Cells were treated either with a 10% trehalose solution or with a heat treatment (which leads to trehalose accumulation) and then exposed either to menadione (a(More)