Learn More
Human embryonic stem cells (hESCs) are envisioned to be a major source for cell-based therapies. Efforts to overcome rejection of hESCs include nuclear transfer and collection of hESC banks representing the broadest diversity of major histocompatability complex (MHC) polymorphorisms. Surprisingly, immune responses to hESCs have yet to be experimentally(More)
Recent success in pancreatic islet transplantation has energized the field to discover an alternative source of stem cells with differentiation potential to beta cells. Generation of glucose-responsive, insulin-producing beta cells from self-renewing, pluripotent human ESCs (hESCs) has immense potential for diabetes treatment. We report here the development(More)
Umbilical cord is a rich source of mesenchymal stromal or stem cells (MSCs) that can be used for developing allogeneic cell therapy to treat intractable diseases. In this report, we present evidence that umbilical cord-derived MSCs (UCMSCs) possess important immunomodulatory properties that may enable them to survive in an allogeneic environment. UCMSCs do(More)
Transplantation of ex vivo expanded autologous limbal stem cells into the diseased eye of patients with limbal stem cell deficiency (LSCD) has been in practice worldwide. However, isolation of limbal tissue from the normal eye of the patient with unilateral LSCD still remains a major concern for the donor. More importantly, autologous cell transplantation(More)
Mesenchymal stromal cells (MSCs) derived from different tissue sources are capable of differentiating into neural and glial cell types. However, the efficiency of differentiation varies between MSCs derived from different tissues. We compared the efficiency of neural progenitor population generation between adipose (AD), bone marrow (BM) and Wharton's jelly(More)
BACKGROUND AIMS Because of their multilineage differentiation capacity, immunomodulatory role and homing ability, mesenchymal stromal cells (MSC) are emerging as a new therapeutic strategy for treating a variety of disorders. Although bone marrow (BM) is the best characterized source of MSC, Wharton's jelly (WJ) of the umbilical cord holds great promise as(More)
Autologous fat grafting for soft tissue reconstruction is challenged by unpredictable long-term graft survival. Fat derived stromal vascular fraction (SVF) is gaining popularity in tissue reconstruction as SVF-enriched fat grafts demonstrate improved engraftment. SVF also has potential in regenerative medicine for remodeling of ischemic tissues by promoting(More)
Mesenchymal stromal/stem cells (MSCs) for clinical use have largely been isolated from the bone marrow, although isolation of these cells from many different adult and fetal tissues has been reported as well. One such source of MSCs is the Whartons Jelly (WJ) of the umbilical cord, as it provides an inexhaustible source of stem cells for potential(More)
Mesenchymal stem cells (MSCs) have become an attractive tool for tissue engineering and targets in clinical transplantation due to their regeneration potential and immuno-suppressive capacity. Although MSCs derived from bone marrow are the most widely used, their harvest requires an invasive procedure. The umbilical cord, which is discarded at birth, can(More)
Osteoarthritis (OA) is a degenerative disease of the connective tissue and progresses with age in the older population or develops in young athletes following sports-related injury. The articular cartilage is especially vulnerable to damage and has poor potential for regeneration because of the absence of vasculature within the tissue. Normal load-bearing(More)