Learn More
—The use of multiple-antenna arrays in both transmission and reception promises huge increases in the throughput of wireless communication systems. It is therefore important to analyze the capacities of such systems in realistic situations, which may include spatially correlated channels and correlated noise, as well as correlated interferers with known(More)
BACKGROUND High throughput sequencing (HTS) platforms produce gigabases of short read (<100 bp) data per run. While these short reads are adequate for resequencing applications, de novo assembly of moderate size genomes from such reads remains a significant challenge. These limitations could be partially overcome by utilizing mate pair technology, which(More)
In this paper, we derive analytic solutions of stochastic mutation-selection networks that describe early events of cancer formation. A main assumption is that cancer is initiated in tissue compartments, where only a relatively small number of cells are at risk of mutating into cells that escape from homeostatic regulation. In this case, the evolutionary(More)
The multichannel Kondo model with SU(N) spin symmetry and SU(K) channel symmetry is considered. The impurity spin is chosen to transform as an antisymmetric representation of SU(N), corresponding to a fixed number of Abrikosov fermions α f † α f α = Q. For more than one channel (K > 1), and all values of N and Q, the model displays non-Fermi behaviour(More)
Identification of transcription factor binding sites within regulatory segments of genomic DNA is an important step toward understanding of the regulatory circuits that control expression of genes. Here, we describe a novel bioinformatics method that bases classification of potential binding sites explicitly on the estimate of sequence-specific binding(More)
The singular value decomposition is a matrix decomposition technique widely used in the analysis of multivariate data, such as complex space-time images obtained in both physical and biological systems. In this paper, we examine the distribution of singular values of low-rank matrices corrupted by additive noise. Past studies have been limited to uniform(More)
Maintenance of alternative chromatin states through cell divisions pose some fundamental constraints on the dynamics of histone modifications. In this paper, we study the systems biology of epigenetic inheritance by defining and analyzing general classes of mathematical models. We discuss how the number of modification states involved plays an essential(More)
Transcriptome profiling studies have recently uncovered a large number of noncoding RNA transcripts (ncRNAs) in eukaryotic organisms, and there is growing interest in their role in the cell. For example, in haploid Saccharomyces cerevisiae cells, the expression of an overlapping antisense ncRNA, referred to here as RME2 (Regulator of Meiosis 2), prevents(More)
MOTIVATION Localizing protein binding sites within genomic DNA is of considerable importance, but remains difficult for protein families, such as transcription factors, which have loosely defined target sequences. It is generally assumed that protein affinity for DNA involves additive contributions from successive nucleotide pairs within the target(More)
The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system(More)