Aniruddh Nath

Learn More
Intelligent agents must be able to handle the complexity and uncertainty of the real world. Logical AI has focused mainly on the former, and statistical AI on the latter. Markov logic combines the two by attaching weights to first-order formulas and viewing them as templates for features of Markov networks. Inference algorithms for Markov logic draw on(More)
Many problems require repeated inference on probabilistic graphical models, with different values for evidence variables or other changes. Examples of such problems include utility maximization, MAP inference, online and interactive inference, parameter and structure learning, and dynamic inference. Since small changes to the evidence typically only affect(More)
Many AI applications need to explicitly represent relational structure as well as handle uncertainty. First order probabilistic models combine the power of logic and probability to deal with such domains. A naive approach to inference in these models is to propositionalize the whole theory and carry out the inference on the ground network. Lifted inference(More)
Lifting can greatly reduce the cost of inference on firstorder probabilistic models, but constructing the lifted network can itself be quite costly. In addition, the minimal lifted network is often very close in size to the fully propositionalized model; lifted inference yields little or no speedup in these situations. In this paper, we address both these(More)
Sum-product networks (SPNs) are a recently-proposed deep architecture that guarantees tractable inference, even on certain high-treewidth models. SPNs are a propositional architecture, treating the instances as independent and identically distributed. In this paper, we introduce Relational SumProduct Networks (RSPNs), a new tractable first-order(More)
Intractable inference has been a major barrier to the wide adoption of statistical relational models. Existing exact methods suffer from a lack of scalability, and approximate methods tend to be unreliable. Sumproduct networks (SPNs; Poon and Domingos 2011) are a recently-proposed probabilistic architecture that guarantees tractable exact inference, even on(More)
Link mining problems are characterized by high complexity (since linked objects are not statistically independent) and uncertainty (since data is noisy and incomplete). Thus they necessitate a modeling language that is both probabilistic and relational. Markov logic provides this by attaching weights to formulas in first-order logic and viewing them as(More)