Learn More
Of all the naturally occurring groundwater contaminants, arsenic is by far the most toxic. Any large-scale treatment strategy to remove arsenic from groundwater must take into consideration safe containment of the arsenic removed with no adverse ecological impact. Currently, 175 well-head community-based arsenic removal units are in operation in remote(More)
A dextran-modified poly(vinyl amine) comb-like surfactant polymer, poly(N-vinyl dextran aldonamide-co-N-vinyl hexanamide), that can surface-adsorb on hydrophobic polymeric substrates, was designed to improve the interfacial blood-compatibility of polymeric biomaterials. Medical-grade polycarbonate was selected as a model substrate because of its extensive(More)
Local drug delivery has become an important treatment modality for the prevention of thrombotic events following coronary angioplasty. In this study, we investigate the ability of liposomes bearing surface conjugated linear Arg-Gly-Asp (RGD) peptide (GSSSGRGDSPA) moieties to target and bind activated platelets, and the effect of such RGD-modified liposomes(More)
Since 1997, over 135 well-head arsenic removal units have been installed in remote villages in the Indian state of West Bengal bordering Bangladesh. Every component of the arsenic removal treatment system including activated alumina sorbent is procured indigenously. Each unit serves approximately 200-300 households and contains about 100 L of activated(More)
Active targeting has become an important component of nanomedicine design where nanovehicles are surface-decorated with cell receptor-specific or disease matrix-specific ligands to enable site-selective binding, retention and delivery of theranostic cargo. In this context, there have been numerous reports regarding surface-modification of nanovehicles with(More)
Platelet adhesion, activation and fibrinogen-mediated aggregation are primary events in vascular thrombosis and occlusion. An injectable delivery system that can carry thrombolytics selectively to the sites of active platelet aggregation has immense potential in minimally invasive targeted therapy of vascular occlusion. To this end we are studying liposomes(More)
The use of amino acid based polymers for biomaterial applications enhance biocompatibility and ensure biodegradability. Two polyurethanes based on L-tyrosine based diphenolic dipeptide, desaminotyrosyl tyrosine hexyl ester as chain extender are synthesized with polyethylene glycol (PEG) and polycaprolactone diol (PCL) as soft segment and hexamethylene(More)
Vascular diseases leading to thrombo-occlusion are the leading cause of morbidity and mortality worldwide. Revascularization and restoration of antegrade blood flow is critical for tissue survival and patient health. In this aspect, systemic administration of thrombolytics (e.g., streptokinase) to dissolve occlusive thrombi is a clinically established(More)
INTRODUCTION Paraesophageal hernia (PEH) repair is a technically challenging operation. These patients are typically older and have more co-morbidities than patients undergoing anti-reflux operations for gastroesophageal reflux disease (GERD), and these factors are usually cited as the reason for worse outcomes for PEH patients. Clinically, it would be(More)
Cell-selective delivery using ligand-decorated nanoparticles is a promising modality for treating cancer and vascular diseases. We are developing liposome nanoparticles surface-modified by RGD peptide ligands having targeting specificity to integrin GPIIb-IIIa. This integrin is upregulated and stimulated into a ligand-binding conformation on the surface(More)