Anirban Santara

Learn More
— Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large scale screening is the inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a computational imaging framework using deep and(More)
Vision impairment due to pathological damage of the retina can largely be prevented through periodic screening using fundus color imaging. However the challenge with large-scale screening is the inability to exhaustively detect fine blood vessels crucial to disease diagnosis. In this work we present a computational imaging framework using deep and ensemble(More)
Deep neural networks are capable of modelling highly non-linear functions by capturing different levels of abstraction of data hierarchically. While training deep networks, first the system is initialized near a good optimum by greedy layer-wise unsupervised pre-training. However, with burgeoning data and increasing dimensions of the architecture , the time(More)
The success of deep neural networks is mostly due their ability to learn meaningful features from the data. Features learned in the hidden layers of deep neural networks trained in computer vision tasks have been shown to be similar to mid-level vision features. We leverage this fact in this work and propose the visualiza-tion regularizer for image tasks.(More)
Visual saliency detection tries to mimic human vision psychology which concentrates on sparse, important areas in natural image. Saliency prediction research has been traditionally based on low level features such as contrast, edge, etc. Recent thrust in saliency prediction research is to learn high level semantics using ground truth eye fixation datasets.(More)
  • 1