Anindya Dutta

Learn More
The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and(More)
HMGA2, a high-mobility group protein, is oncogenic in a variety of tumors, including benign mesenchymal tumors and lung cancers. Knockdown of Dicer in HeLa cells revealed that the HMGA2 gene is transcriptionally active, but its mRNA is destabilized in the cytoplasm through the microRNA (miRNA) pathway. HMGA2 was derepressed upon inhibition of let-7 in cells(More)
Three muscle-specific microRNAs, miR-206, -1, and -133, are induced during differentiation of C2C12 myoblasts in vitro. Transfection of miR-206 promotes differentiation despite the presence of serum, whereas inhibition of the microRNA by antisense oligonucleotide inhibits cell cycle withdrawal and differentiation, which are normally induced by serum(More)
To ensure its duplication, chromosomal DNA must be precisely duplicated in each cell cycle, with no sections left unreplicated, and no sections replicated more than once. Eukaryotic cells achieve this by dividing replication into two non-overlapping phases. During late mitosis and G1, replication origins are 'licensed' for replication by loading the(More)
One of the main engines that drives cellular transformation is the loss of proper control of the mammalian cell cycle. The cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) promotes cell cycle arrest in response to many stimuli. It is well positioned to function as both a sensor and an effector of multiple anti-proliferative signals. This(More)
New types of small RNAs distinct from microRNAs (miRNAs) are progressively being discovered in various organisms. In order to discover such novel small RNAs, a library of 17- to 26-base-long RNAs was created from prostate cancer cell lines and sequenced by ultra-high-throughput sequencing. A significant number of the sequences are derived from precise(More)
The Pax7 transcription factor is required for muscle satellite cell biogenesis and specification of the myogenic precursor lineage. Pax7 is expressed in proliferating myoblasts but is rapidly downregulated during differentiation. Here we report that miR-206 and -486 are induced during myoblast differentiation and downregulate Pax7 by directly targeting its(More)
Eukaryotic cells control the initiation of DNA replication so that origins that have fired once in S phase do not fire a second time within the same cell cycle. Failure to exert this control leads to genetic instability. Here we investigate how rereplication is prevented in normal mammalian cells and how these mechanisms might be overcome during tumor(More)
The DNA polymerase delta processivity factor Proliferating Cell Nuclear Antigen (PCNA) promotes the DNA damage-induced degradation of the replication initiation factor Cdt1 via the CRL4(Cdt2) E3 ubiquitin ligase complex. Here we demonstrate that PCNA promotes the ubiquitylation and degradation of the CDK inhibitor p21 in cells irradiated with low dose of(More)
Cdt1, a protein essential in G1 for licensing of origins for DNA replication, is inhibited in S-phase, both by binding to geminin and degradation by proteasomes. Cdt1 is also degraded after DNA damage to stop licensing of new origins until after DNA repair. Phosphorylation of Cdt1 by cyclin-dependent kinases promotes its binding to SCF-Skp2 E3 ubiquitin(More)