Animesh Mukherjee

Learn More
Language usage over computer mediated discourses, such as chats, emails and SMS texts, significantly differs from the standard form of the language and is referred to as texting language (TL). The presence of intentional misspellings significantly decrease the accuracy of existing spell checking techniques for TL words. In this work, we formally investigate(More)
Despite the prevalence of community detection algorithms, relatively less work has been done on understanding whether a network is indeed modular and how resilient the community structure is under perturbations. To address this issue, we propose a new vertex-based metric called "permanence", that can quantitatively give an estimate of the community- like(More)
In this paper, we propose an unsupervised method to identify noun sense changes based on rigorous analysis of time-varying text data available in the form of millions of digitized books. We construct distributional thesauri based networks from data at different time points and cluster each of them separately to obtain word-centric sense clusters(More)
Cross-linguistic similarities are reflected by the speech sound systems of languages all over the world. In this work we try to model such similarities observed in the consonant inventories, through a complex bipartite network. We present a systematic study of some of the appealing features of these inventories with the help of the bipartite network. An(More)
The sound inventories of the world’s languages self-organize themselves giving rise to similar cross-linguistic patterns. In this work we attempt to capture this phenomenon of self-organization, which shapes the structure of the consonant inventories, through a complex network approach. For this purpose we define the occurrence and co-occurrence networks of(More)
Study of community in time-varying graphs has been limited to its detection and identification across time. However, presence of time provides us with the opportunity to analyze the interaction patterns of the communities, understand how each individual community grows/shrinks, becomes important over time. This paper, for the first time, systematically(More)
In this paper, we study the problem of predicting <i>future citation count</i> of a scientific article after a given time interval of its publication. To this end, we gather and conduct an exhaustive analysis on a dataset of more than 1.5 million scientific papers of computer science domain. On analysis of the dataset, we notice that the citation count of(More)
Speech sounds of the languages all over the world show remarkable patterns of cooccurrence. In this work, we attempt to automatically capture the patterns of cooccurrence of the consonants across languages and at the same time figure out the nature of the force leading to the emergence of such patterns. For this purpose we define a weighted network where(More)
We study the growth of bipartite networks in which the number of nodes in one of the partitions is kept fixed while the other partition is allowed to grow. We study random and preferential attachment as well as combination of both. We derive the exact analytical expression for the degree-distribution of all these different types of attachments while(More)