Learn More
—Process parameter variations are expected to be significantly high in a sub-50-nm technology regime, which can severely affect the yield, unless very conservative design techniques are employed. The parameter variations are random in nature and are expected to be more pronounced in minimum geometry transistors commonly used in memories such as SRAM.(More)
Designing high-performance systems with high yield under parameter variations has raised serious design challenges in nanometer technologies. In this paper, we propose a profit-aware yield model, based on which we present a statistical design methodology to improve profit of a design considering frequency binning and product price profile. A low-complexity(More)
Operating frequency of a pipelined circuit is determined by the delay of the slowest pipeline stage. However, under statistical delay variation in sub-100nm technology regime, the slowest stage is not readily identifiable and the estimation of the pipeline yield with respect to a target delay is a challenging problem. We have proposed analytical models to(More)
We study the evolution of quantum entanglement during exciton energy transfer (EET) in a network model of the Fenna-Matthews-Olson (FMO) complex, a biological pigment-protein complex involved in the early steps of photosynthesis in sulphur bacteria. The influence of Markovian, as well as spatially and temporally correlated (non-Markovian) noise on the(More)
—Reducing the energy consumption of a real-time system has emerged as an important design concern. In this paper, we propose GAARP, an adaptive scalable architecture targeted toward algorithm-specific tasks for just-in-time performance using the right amount of power. The architecture consists of Globally Asynchronous and Locally Synchronous (GALS) building(More)
Excitation transfer through interacting systems plays an important role in many areas of physics, chemistry, and biology. The uncontrollable interaction of the transmission network with a noisy environment is usually assumed to deteriorate its transport capacity, especially so when the system is fundamentally quantum mechanical. Here we identify key(More)
Independent control of front and back gate in double gate (DG) devices can be used to merge parallel transistors in noncritical paths. This reduces the effective switching capacitance and, hence, the dynamic power dissipation of a circuit. However, efficient design of large-scale circuits with DG devices is not well explored due to lack of proper modeling(More)
Although universal quantum computers ideally solve problems such as factoring integers exponentially more efficiently than classical machines, the formidable challenges in building such devices motivate the demonstration of simpler, problem-specific algorithms that still promise a quantum speedup. We constructed a quantum boson-sampling machine (QBSM) to(More)