Animesh Agrawal

Learn More
A method has been developed to induce and retain a contractile phenotype for vascular smooth muscle cells, as the first step towards the development of a biomimetic blood vessel construct with minimal compliance mismatch. Melt spun PCL fibers were deposited on a mandrel to form aligned fibers of 10 μm in diameter. The fibers were bonded into aligned(More)
Two printing methods, extrusion and inkjet, are used to deposit tracks of PEDOT/PSS conducting polymer onto biopolymer films with a view to prepare implantable tissue mimics containing electronic devices. Extruded tracks offer lower printing resolution, but better electrical characteristics compared to inkjet printed tracks. The biopolymer–ink interaction(More)
Considerable interest has arisen in precision fabrication of cell bearing scaffolds and structures by free form fabrication. Gelatin is an ideal material for creating cell entrapping constructs, yet its application in free form fabrication remains challenging. We demonstrate the use of gelatin, crosslinked with microbial transglutaminase (mTgase), as a(More)
UNLABELLED The optimal bio-artificial blood vessel construct is one that has a compliant tubular core with circumferentially aligned smooth muscle cells (SMCs). Obtaining this well-aligned pattern of SMCs on a scaffold is highly beneficial as this cellular orientation preserves the SMC contractile phenotype. We used 3D patterning to create channels on a(More)
The particular smart textiles effort here is aimed at stress and strain sensors printed on textiles to be the equivalent of proprioception in biology, providing information about the actions of the body for the purposes of controlling and monitoring muscle action. We envisage printing arrays of simple piezoresistive sensors onto fabrics and using these to(More)
  • 1