Learn More
MOTIVATION In silico experiments in bioinformatics involve the co-ordinated use of computational tools and information repositories. A growing number of these resources are being made available with programmatic access in the form of Web services. Bioinformatics scientists will need to orchestrate these Web services in workflows as part of their analyses.(More)
Life sciences research is based on individuals, often with diverse skills, assembled into research groups. These groups use their specialist expertise to address scientific problems. The in silico experiments undertaken by these research groups can be represented as workflows involving the co-ordinated use of analysis programs and information repositories(More)
Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family(More)
To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximately 4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were predicted to be essential. The vast majority of essential(More)
With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations,(More)
Cellular senescence--the permanent arrest of cycling in normally proliferating cells such as fibroblasts--contributes both to age-related loss of mammalian tissue homeostasis and acts as a tumour suppressor mechanism. The pathways leading to establishment of senescence are proving to be more complex than was previously envisaged. Combining in-silico(More)
MOTIVATION New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and(More)
In Saccharomyces cerevisiae, Cdc13 binds telomeric DNA to recruit telomerase and to "cap" chromosome ends. In temperature-sensitive cdc13-1 mutants telomeric DNA is degraded and cell-cycle progression is inhibited. To identify novel proteins and pathways that cap telomeres, or that respond to uncapped telomeres, we combined cdc13-1 with the yeast gene(More)
Workflow techniques form an important part of in-silico experimentation within the bioinformatics domain and potentially allow the eScientist to describe and enact their experimental processes in a structured, repeatable and verifiable way. Bioinformaticians routinely use Web-based resources within their in-silico experiments. However, the use of current(More)
As web service technology matures there is growing interest in exploiting workflow techniques to coordinate web services. Bioinformaticians are a user community who combine web resources to perform in <i>silico</i> experiments. These users are scientists and not information technology experts they require workflow solutions that have a low cost of entry for(More)