Anil V. Nair

  • Citations Per Year
Learn More
Cyclic nucleotide-gated (CNG) ion channels, underlying sensory transduction in vertebrate photoreceptors and olfactory sensory neurons, require cyclic nucleotides to open. Here, we present structural models of the tetrameric CNG channel pore from bovine rod in both open and closed states, as obtained by combining homology modeling-based techniques,(More)
With the aim of understanding the relation between structure and gating of CNGA1 channels from bovine rod, an extensive cysteine scanning mutagenesis was performed. Each residue from Phe-375 to Val-424 was mutated into a cysteine one at a time and the modification caused by various sulfhydryl reagents was analyzed. The addition of the mild oxidizing agent(More)
Three constructs are used for the analysis of biophysical properties of CNGA1 channels: the WT CNGA1 channel, a CNGA1 channel where all endogenous cysteines were removed (CNGA1cys-free) and a construct composed of two CNGA1 subunits connected by a small linker (CNGA1tandem). So far, it has been assumed, but not proven, that the molecular structure of these(More)
This work completes previous findings and, using cysteine scanning mutagenesis (CSM) and biochemical methods, provides detailed analysis of conformational changes of the S6 domain and C-linker during gating of CNGA1 channels. Specific residues between Phe375 and Val424 were mutated to a cysteine in the CNGA1 and CNGA1cys-free background and the effect of(More)
We investigated conformational changes occurring in the C-linker and cyclic nucleotide-binding (CNB) domain of CNGA1 channels by analyzing the inhibition induced by thiol-specific reagents in mutant channels Q409C and A414C in the open and closed state. Cd2+ (200 μM) inhibited irreversibly mutant channels Q409C and A414C in the closed but not in the open(More)
  • 1