Learn More
The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A(More)
Malaria is estimated to cause 0.7 to 2.7 million deaths per year, but the actual figures could be substantially higher owing to under-reporting and difficulties in diagnosis. If no new control measures are developed, the malaria death toll is projected to double in the next 20 years. Efforts to control the disease are hampered by drug resistance in the(More)
In this review, Anil Ghosh, Marten Edwards and Marcelo Jacobs-Lorena follow the journey of the Plasmodium parasite in the mosquito vector. At each developmental step, they highlight some of the major unanswered questions currently challenging cell and molecular biologists. A more thorough understanding of Plasmodium-mosquito interactions might lead to the(More)
The peritrophic matrix (PM) is a chitin-containing acellular sheath that surrounds the blood meal and separates the food bolus from the midgut epithelium. Intense molecular traffic through the PM occurs during digestion. Digestive enzymes secreted by the midgut epithelium must traverse the PM to reach their substrates in the food bolus, and digestion(More)
Malaria parasites must undergo development within mosquitoes to be transmitted to a new host. Antivector transmission-blocking vaccines inhibit parasite development by preventing ookinete interaction with mosquito midgut ligands. Therefore, the discovery of novel midgut antigen targets is paramount. Jacalin (a lectin) inhibits ookinete attachment by masking(More)
SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1(More)
Immuno-screening of an adult Aedes aegypti midgut cDNA expression library with anti-peritrophic matrix antibodies identified cDNAs encoding a novel peritrophic matrix protein, termed Ae. aegypti Adult Peritrophin 50 (Ae-Aper50), and the epithelial cell-surface membrane protein, AEG12. Both genes are expressed exclusively in the midguts of adult female(More)
Plasmodium, the causative agent of malaria, has to undergo sexual differentiation and development in anopheline mosquitoes for transmission to occur. To isolate genes specifically induced in both organisms during the early stages of Plasmodium differentiation in the mosquito, two cDNA libraries were constructed, one enriched for sequences expressed in(More)
Metarhizium anisopliae infects mosquitoes through the cuticle and proliferates in the hemolymph. To allow M. anisopliae to combat malaria in mosquitoes with advanced malaria infections, we produced recombinant strains expressing molecules that target sporozoites as they travel through the hemolymph to the salivary glands. Eleven days after a(More)
Despite vast efforts and expenditures in the past few decades, malaria continues to kill millions of persons every year, and new approaches for disease control are urgently needed. To complete its life cycle in the mosquito, Plasmodium, the causative agent of malaria, has to traverse the epithelia of the midgut and salivary glands. Although strong(More)