Learn More
Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult(More)
ÐThe primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory(More)
ÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectation-maximization (EM) algorithm, it does not require careful initialization. The(More)
Organizing data into sensible groupings is one of the most fundamental modes of understanding and learning. As an example, a common scheme of scientific classification puts organisms into taxonomic ranks: domain, kingdom, phylum, class, etc.). Cluster analysis is the formal study of algorithms and methods for grouping, or clustering, objects according to(More)
A wide variety of systems requires reliable personal recognition schemes to either confirm or determine the identity of an individual requesting their services. The purpose of such schemes is to ensure that the rendered services are accessed only by a legitimate user and no one else. Examples of such applications include secure access to buildings, computer(More)
We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a clustering ensemble--a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions), different ways of producing data partitions are: 1) applying different clustering algorithms and 2) applying the same clustering(More)
-This paper presents a texture segmentation algorithm inspired by the multi-channel filtering theory for visual information processing in the early stages of human visual system. The channels are characterized by a bank of Gabor filters that nearly uniformly covers the spatial-frequency domain, and a systematic filter selection scheme is proposed, which is(More)
User verification systems that use a single biometric indicator often have to contend with noisy sensor data, restricted degrees of freedom, non-universality of the biometric trait and unacceptable error rates. Attempting to improve the performance of individual matchers in such situations may not prove to be effective because of these inherent problems.(More)