Anika M. S. Hartz

Learn More
Increased expression of drug efflux transporters at the blood-brain barrier accompanies epileptic seizures and complicates therapy with antiepileptic drugs. This study is concerned with identifying mechanistic links that connect seizure activity to increased P-glycoprotein expression at the blood-brain barrier. In this regard, we tested the hypothesis that(More)
Reduced clearance of amyloid-beta (Abeta) from brain partly underlies increased Abeta brain accumulation in Alzheimer's disease (AD). The mechanistic basis for this pathology is unknown, but recent evidence suggests a neurovascular component in AD etiology. We show here that the ATP-driven pump, P-glycoprotein, specifically mediates efflux transport of(More)
In the present review we provide a summary of ATP-binding cassette (ABC) transporters in the central nervous system (CNS). Our review is focused on transporters of the ABC A, B, C, D, and G families that have been detected in the cells of the neurovascular unit/blood-brain barrier including brain capillary endothelial cells, pericytes, astrocytes, and(More)
In the epileptic brain, seizure activity induces expression of the blood-brain barrier efflux transporter, P-glycoprotein, thereby limiting brain penetration and therapeutic efficacy of antiepileptic drugs. We recently provided the first evidence that seizures drive P-glycoprotein induction through a pathway that involves glutamate-signaling through the(More)
Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer's disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous(More)
Alzheimer's disease (AD) is considered the "disease of the twenty-first century." With a 10-fold increase in global incidence over the past 100 years, AD is now reaching epidemic proportions and by all projections, AD patient numbers will continue to rise. Despite intense research efforts, AD remains a mystery and effective therapies are still unavailable.(More)
The ATP-driven efflux transporter, breast cancer resistance protein (BCRP), handles many therapeutic drugs, including chemotherapeutics, limiting their ability to cross the blood-brain barrier. This study provides new insight into rapid, nongenomic regulation of BCRP transport activity at the blood-brain barrier. Using isolated brain capillaries from rats(More)
Xenobiotic efflux pumps at the blood-brain barrier are critical modulators of central nervous system pharmacotherapy. We previously found expression of the ligand-activated nuclear receptor, pregnane X receptor (PXR), in rat brain capillaries, and showed increased expression and transport activity of the drug efflux transporter, P-glycoprotein, in(More)
BACKGROUND AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP) enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. METHODS Expression of AhR and(More)