Aniello Murano

Learn More
The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and EXPTIME-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study(More)
In open systems verification, to formally check for reliability, one needs an appropriate formalism to model the interaction between agents and express the correctness of the system no matter how the environment behaves. An important contribution in this context is given by modal logics for strategic ability, in the setting of multiagent games, such as(More)
Probabilistic timed automata are an extension of timed automata with discrete probability distributions. We consider model-checking algorithms for the subclasses of probabilistic timed automata which have one or two clocks. Firstly, we show that Pctl probabilistic model-checking problems (such as determining whether a set of target states can be reached(More)
Model checking has come of age. A number of techniques are increasingly used in industrial setting to verify hardware and software systems, both against models and concrete implementations. While it is generally accepted that obstacles still remain, notably handling infinite state systems efficiently, much of this work involves refining and improving(More)
Strategy Logic (SL, for short) has been recently introduced by Mogavero, Murano, and Vardi as a formalism for reasoning explicitly about strategies, as first-order objects, in multi-agent concurrent games. This logic turns out to be very powerful, strictly subsuming all major previously studied modal logics for strategic reasoning, including ATL, ATL∗, and(More)
Temporal logics are a well investigated formalism for the specification, verification, and synthesis of reactive systems. Within this family, alternating temporal logic, ATL*, has been introduced as a useful generalization of classical linearand branching-time temporal logics by allowing temporal operators to be indexed by coalitions of agents. Classically,(More)
The rapid development of complex and safety-critical systems requires the use of reliable verification methods and tools for system design (synthesis). Many systems of interest are reactive, in the sense that their behavior depends on the interaction with the environment. A natural framework to model them is a two-player game: the system versus the(More)
In recent years, huge effort has been devoted to the definition of modal logics for strategic reasoning in the setting of multi-agent games. In this area, a recent contribution is the introduction of Strategy Logic (SL, for short) by Mogavero, Murano, and Vardi. This logic allows to reason explicitly about strategies as first order objects. It strictly(More)
The solution of games is a key decision problem in the context of verification of open systems and program synthesis. Given a game graph and a specification, we wish to determine if there exists a strategy of the protagonist that allows to select only behaviors fulfilling the specification. In this paper, we consider timed games, where the game graph is a(More)