Learn More
This works addresses the problem of reconstructing multiple T1- or T2-weighted images of the same anatomical cross section from partially sampled K-space data. Previous studies in reconstructing magnetic resonance (MR) images from partial samples of the K-space used compressed sensing (CS) techniques to exploit the spatial correlation of the images (leading(More)
This paper proposes a new method for face recognition based on a multiresolution analysis tool called Digital Curvelet Transform. Multiresolution ideas notably the wavelet transform have been profusely employed for addressing the problem of face recognition. However, theoretical studies indicate, digital curvelet transform to be an even better method than(More)
The computational cost for most classification algorithms is dependent on the dimensionality of the input samples. As the dimensionality could be high in many cases, particularly those associated with image classification, reducing the dimensionality of the data becomes a necessity. The traditional dimensionality reduction methods are data dependent, which(More)
This works addresses the problem of reconstructing multi-echo T2 weighted MR images from partially sampled K-space data. Previous studies in reconstructing MR images from partial samples of the K-space used Compressed Sensing (CS) techniques to exploit the spatial correlation of the images (leading to sparsity in transform domain). Such techniques can be(More)
Recently a new classification assumption was proposed in [1]. It assumed that the training samples of a particular class approximately form a linear basis for any test sample belonging to that class. The classification algorithm in [1] was based on the idea that all the correlated training samples belonging to the correct class are used to represent the(More)
This work explores the problem of solving the MR reconstruction problem when the number of K-space samples acquired in a non-Cartesian grid is considerably less than the resolution (number of pixels) of the image. Mathematically this leads to the solution of an under-determined and ill-posed inverse problem. The inverse problem can only be solved when(More)